• Title/Summary/Keyword: 9-dihydroxy-2

Search Result 116, Processing Time 0.029 seconds

Antioxidant and Tyrosinase Inhibitory Activities from Seed Coat of Brown Soybean

  • Lee, Jin-Hwan;Baek, In-Youl;Ko, Jong-Min;Kang, Nam-Suk;Shin, Seong-Hyu;Lim, Sea-Gyu;Oh, Ki-Won;Shin, Sang-Ouk;Park, Keum-Yong;Park, Ki-Hun;Ha, Tae-Joung
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Soybeans with brown, black, and yellow seed coats were compared to total phenolic contents and antioxidant activities including 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals. Also, 3 seed coats were examined for inhibitory activities on tyrosinase and lipoxygenase-1 on the basis of spectrophotometric and polarographic methods. Among seed coat extracts, 80% methanol extract of brown soybean seed coat showed the highest total phenolic contents ($68.9{\pm}3.29\;mg$ GAE/g) as well as exhibited potent scavenging effects on the DPPH ($IC_{50}=4.3\;{\mu}g/mL$) and ABTS ($IC_{50}=3.7\;{\mu}g/mL$) radicals. In a polarographic experiment, this extract was potentially inhibited the oxidation of L-tyrosine and L-3,4-dihydroxy-phenylalanin (L-DOPA) catalyzed by mushroom tyrosinase with $IC_{50}$ values of 12.4 and $63.7\;{\mu}g/mL$, respectively. It was also detected inhibition of the tyrosinase catalyzed oxidation of L-DOPA with an $IC_{50}$ value of 120.3 mg/mL in UV spectrophotometric experiment. In addition, this extract inhibited the linoleic acid peroxidation catalyzed by lipoxygenase-1 with an $IC_{50}$ value of $4.0\;{\mu}g/mL$. These results suggest that brown soybean may possess more beneficial effect on human health than black and yellow soybeans.

Studies on the Selective Separation and Preconcentration of Cr(VI) Ion by XAD-16-Chromotropic Acid Chelating Resin (XAD-16-Chromotropic Acid 킬레이트 수지에 의한 몇 가지 금속이온의 선택적 분리 및 농축에 관한 연구)

  • Lee, Won;Lee, Chang-Youl;Kim, Mi-Kyoung;Kim, In-Whan
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.199-210
    • /
    • 2004
  • A new polystyrene-divinylbenzene chelating resin containing 4,5-dihydroxy-naphthalene-2,7-disulfonic acid (chromotropic acid : CTA) as functional group has been synthesized and characterized. The sorption and desorption properties of this chelating resin for Cr(III) ion and Cr(VI) ion including nine metal bloodstain. As a results, FOB test kit could be effectively applied to identification of human blood at chelating resin was stable in acidic and alkaline solution. The Cr(VI) ion is selectively separated from Cr (III) ion at pH 2 and the maximum sorption capacity of Cr(VI) ion is 1.2 mmol/g. In the presence of anions such as $F^-$, $SO{_4}^{2-}$, $CN^-$, $CH_3COO^-$, $NO{_3}^-$, the sorption of Cr(VI) ion was reduced but anions such as $PO{_4}^{3-}$ and $Cl^-$ revealed no interference effect. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 2 was Cr(VI)>Sn(II)>Fe(III)>Cu(II)>Cd(II)${\simeq}Pb(II){\simeq}Cr(III){\simeq}Mn(II){\simeq}Ni(II){\simeq}Al(III)$. Desorption characteristics for Cr(VI) ion was investigated with desorption agents such as $HNO_3$, HCl, and $H_2SO_4$. It was found that the ion showed high desorption efficiency with 3 M HCl. As the result, the chelating resin, XAD-16-CTA was successfully applied to separation and preconcentration of Cr (VI) ion from several metal ions in metal finishing works.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Profiles of Plasma Sex Steroid Hormone and Vitellogenin According to Ovarian Development of the Oblong Rockfish Sebastes oblongus (황점볼락 난소 발달에 따른 혈중 성호르몬과 난황단백전구체의 변동)

  • Kim, Dae-Hyun;Jeong, Jee-Hyun;Yoon, Seong-Jong;Hwang, Hyung-Gue;Lee, Yoon-Ho;Kim, Dae-Jung
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 2009
  • To understand the steroidogenic activities and plasma vitellogenin (VTG) profiles according to the reproductive phases in the oblong rockfish Sebastes oblongus, we examined changes in sex steroid hormones and plasma vitellogenin. Plasma levels of testosterone (T) was significantly higher value in only ovulation stage (P<0.05). In vitellogenesis, plasma estradiol-$17{\beta}$ ($E_2$) had a high level in August which was a similar higher level until ovulation than other ovarian development stages (P<0.05). However, $E_2$ was significantly decreased after embryo stage (P<0.05). This indicates that variability in $E_2$ at different stage is associated with the development of the oocytes. Plasma levels of $17{\alpha}$, $20{\beta}$-dihydroxy-4-pregnen-3-one (DHP) were significantly high at the stages of vitellogenesis and ovulation (P<0.001). It is assumed that DHP plays an important role in vitellogenesis. Also, We determined the plasma levels of vitellogenin (VTG) divided the development stage into four steps: immaturation, vitellogenesis, and ovulation and parturition. A significant lower levels of VTG were shown in immaturation and parturition (P<0.05), which did not discriminate between them. However, in vitellogenesis and ovulation were shown in a remarkable higher levels of VTG(P<0.05), but not significantly different between them. Consequently, plasma VTG levels were considerably increased after October and maintained a higher concentration until ovulation, but significantly decreased after ovulation. It is suggested that VTG plays also an important role in the development of vitellogenesis and oogenesis.

Application of the Extract of Zanthoxylum piperitum DC to Manufacturing Eco-friendly Antimicrobial Interior Fabric Blind Materials (초피 추출물을 이용한 친환경 항균 실내 직물 블라인드 소재 개발)

  • Xie, Li Rui;Jun, Do Youn;Park, Ju Eun;Kwon, Gi Hyun;Cho, Bonggeun;Park, Hyun Woo;Lee, Chang Woo;Kim, Chang Young;Jung, Hyo-Il;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.936-942
    • /
    • 2016
  • As the incidence of environmental diseases is increasing due to harmful environmental factors, there is a rising interest in developing eco-friendly materials for housing. In this study, we sought to develop antimicrobial interior fabric blind materials by employing ethanol extract of a medicinal plant Zanthoxylum piperitum DC. As determined by the disc diffusion method, the zones of inhibition of the pericarp ethanol extract at a concentration of 5 mg/disc against Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus mutans were 13.5±1.5 mm, 14.0±0.5 mm and 15.0±0.1 mm, respectively, whereas the leaf ethanol extract (5 mg/disc) against K. pneumoniae, S. aureus, and S. mutans were 12.8± 0.3 mm, 13.5±1.0 mm, and 12.0±0.1 mm, respectively. The IC50 of the leaf ethanol extract against K. pneumoniae, S. aureus and S. mutans were about 0.5 mg/ml, 0.1 mg/ml and 1.0 mg/ml respectively. To examine whether the leaf ethanol extract possessing antibacterial activity of Z. piperitum DC can be applicable to production of antimicrobial fabric blind materials, the fabrics treated with either 1.0% or 2.0% of the leaf ethanol extract were tested for antibacterial activity against K. pneumoniae and S. aureus using International Standard Fabrics Test Method. The results indicate that the fabric treated with the ethanol extract of Z. piperitum DC possesses an excellent antimicrobial activity against both pathogenic bacteria. These results suggest that Z. piperitum DC may be applicable to producing functional fabrics which are effective in reducing the harmful bacterial factors in indoor environments.

Testicular Development and Serum Levels of Gonadal Steroids Hormone during the Annual Reproductive Cycle of the Male Koran Dark Sleeper, Odontobutis platycephala (Iwata et Jeon) (동사리, Odontobutis platycephala (Iwata et jeon) 수컷의 생식주기에 따른 정소 발달과 혈중 생식소 스테로이드의 변화)

  • 이원교;양석우
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.475-485
    • /
    • 1998
  • To clarify annual reproductive cycle of Koran dark sleeper, odontobutis platycephala, we examined the seasonal changes of gonadosomatic index(GSI), testicular development stages and sex steroid hormones in blood from December 1995 to November 1997. Testis was podlike shape from July to October, and tadpole-like shape from November because of its expanded posterior part. GSI was 0.14~0.18 from July to September and increased to $0.43{\pm}0.04$ in October and then was not changed significantly until February. GSI was reincreased to $0.52{\pm}0.09$ from March and then was kept at similer levels until May, but fell down to $0.28{\pm}0.05$ in June. As results of histological observation, testis was divided into 3 parts(anterior, boundary, posterior) in the development progress of germ cells. In July, the testis was composed of only spermatogonia without seminiferous tubules in most fishes. In the anterior part of testis, the ferquency of spermatogenesis stage seminiferous tubules appearing in August was more than 80% from September to December. decreased gradually from January to March and drastically in April, and then disappeared in June. The frequency of spermiogenesis stage seminiferous tubules appearing in December, increased gradually from January to March and drastically to 80% in April, and reached to 90% the highest levels of the year in June. Post-spawning stage seminiferous tubules did not appear throughout the year. The frequency of spermatogonia was 100% and 65% in July and August, and less than 20% in the rest period of the year. In the boundary part, the frequency of spermatogenesis stage seminiferous tubules appearing in August increased from September and reached to 82% in November, decreased from December, adn disappeared in March. The frequency of spermiogenesis stage seminiferous tubules appearing in November was less than 18% until February, and increased to 29%~57% from March to June. The frequency of post-spawning stage seminiferous tubules appeared 12%~25% only from March to June. The frequency of spermatogonia was 100% in July, decreased to 85% in August and 10% in November, and increased gradually from December to 50% in April, and decreased again from May to June. In the posterior part, seminiferous tubules with some seminiferous tubules increased drastically 80%~85% in August and September, decreased drastically from October to November and remained below 10% until February, and disappeared after March. The frequency of spermiogenesis stage seminiferous tubules appearing in August increased sharply from October and reached to 75% in November. decreased to 15% in December and no significant changes until March, and disappeared after April. The frequency of post-spawning stage seminiferous tubules appearing very early in November increased to 82% in December and 85%~95% until June. The frequency of spermatogonia was 100% in July, decreased drastically to 15% in August, disappeared from October to Mrch, but reappeared from April and kept at less than 10% until June. The blood level of testosterone (T) increrased gradually from August was $0.61{\pm}0.09 ng/m\ell$ in November, increrased drastically to $3.99{\pm}1.22 ng/m\ell$ in December and maintained at in similar level until March, and decreased to $0.25{\pm}0.14 ng/m{\ell} ~ 0.17{\pm}0.13ng/m{\ell}$ in April and May and no significant changes until July (P<0.05). The blood level of 17, 20 -dihydroxy-4-pregnen-3-one $ng/m{\ell}$in the rest of year without significant changes(P<0.05). Taken together these results, the germ cell development of testis progressed in the order of posterior, boundary, anterior part during annual reproductive cycle in Korean dark sleeper. The testicular cycle of Korean dark sleeper was as follows. The anterior part of testis : i.e. spermatogonial proliferation period (July), early maturation period (from August to November), mid maturation period (from December to March), late maturation period (from April to May) and functional maturation period (June) were elucidated. The boundary of testis, i.e. spermatogonial proliferation period (July), early maturation period (from August to October), mid maturation period (from November to February) and the coexistence period of late maturation, functional maturation and post-spawn (from March to June) were elucidated. The posterior of testis, i.e. spermatogonial proliferation period (July), mid maturation period (from August ot September), late maturation period (October), functional maturation period (November) and post-spawn period (from December to June) were elucidated. It was showed that the changes of sex steroid hormone in blood played a important roles in the annual reproductive cycle of Korean dark sleeper.

  • PDF