• Title/Summary/Keyword: 802.11n

Search Result 180, Processing Time 0.023 seconds

An Area-efficient Implementation of Layered LDPC Decoder for IEEE 802.11n WLAN (IEEE 802.11n WLAN 표준용 Layered LDPC 복호기의 저면적 구현)

  • Jeong, Sang-Hyeok;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.486-489
    • /
    • 2010
  • This paper describes a layered LDPC decoder which supports block length of 1,944 bits and code rate 1/2 for IEEE 802.11n WLAN standard. To reduce the hardware complexity, the min-sum algorithm and layered architecture is adopted. A novel memory reduction technique suitable for min-sum algorithm reduces memory size by 75% compared with conventional method. The designed processor has 200,400 gates and 19,400 bits memory, and it is verified by FPGA implementation. The estimated throughput is about 200 Mbps at 120 MHz clock by using Xilinx Virtex-4 FPGA device.

  • PDF

An Architecture for IEEE 802.11n LDPC Decoder Supporting Multi Block Lengths (다중 블록길이를 지원하는 IEEE 802.11n LDPC 복호기 구조)

  • Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.798-801
    • /
    • 2010
  • This paper describes an efficient architecture for LDPC(Low-Density Parity Check) decoder, which supports three block lengths (648, 1,296, 1,944) of IEEE 802.11n standard. To minimize hardware complexity, the min-sum algorithm and block-serial layered structure are adopted in DFU(Decoding Function Unit) which is a main functional block in LDPC decoder. The optimized H-ROM structure for multi block lengths reduces the ROM size by 42% as compared to the conventional method. Also, pipelined memory read/write scheme for inter-layer DFU operations is proposed for an optimized operation of LDPC decoder.

  • PDF

Identification of WLAN Signals Using the Difference in the Occupied Bandwidth (점유 대역폭 차이를 이용한 무선랜 신호 구별 방법)

  • Lim, Chang Heon;Kim, Hyung Jung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.3-7
    • /
    • 2015
  • Recently, a lot of research effort has been directed toward spectrum sensing and identification of OFDM signals as the OFDM technique has been adopted for transmission in many wireless communications standards. Among them, two popular WLAN standards, IEEE 802.11a and IEEE 802.11n, have a very similar OFDM symbol structure in terms of the lengths of CP(cyclic prefix) and effective OFDM symbol and so it is not straightforward to distinguish them with existing spectrum sensing methods based on the difference in the parameters. In this paper, we present a spectrum sensing strategy for identifying them by exploiting the fact that they employ different bandwidths and examine its performance.

Development Trends of IEEE 802.11n Chipset for Next-Generation Wireless LAN (IEEE 802.11n 차세대 무선 LAN 칩셋 개발 동향)

  • Choi, E.Y.;Song, K.H.;Lee, S.K;Bang, S.C.
    • Electronics and Telecommunications Trends
    • /
    • v.21 no.3 s.99
    • /
    • pp.79-90
    • /
    • 2006
  • CDMA 기술을 기반으로 하는 이동통신시스템의 발전과 DSL 기반의 유선통신시스템의 발전은 우리나라를 세계적인 정보통신 강국으로 성장시키고 있다. 세계적으로 높은 수준의 개인용 컴퓨터와 이동통신단말기 보유율을 바탕으로 폭발적인 인터넷서비스사용량의 증가뿐만 아니라 무선인터넷서비스에 대한 요구사항도 증가하고 있다. 이에 맞춰 무선 LAN은 고속의 가입자 전송속도를 지원하기 위해 발전하고 있다. 이미 high throughput을 목표로 하는 국제 표준화가 진행되어 마무리 단계에 있고, 이에 세계적인 칩셋 업체들이 앞다투어 IEEE 802.11n draft 이전의 EWC 버전을 이용한 칩셋을 발표하고 있다. 현재 ETRI에서는 802.11n draft 표준안을 기반으로 하는 칩셋 개발이 완성 단계에 이르렀으며, 이미 그 기능 및 성능에 대해 FPGA를 이용한 시스템 구축으로 확인하였다. 앞으로 네트워크, 오피스 네트워크 및 휴대폰 탑재 칩 등에 대한 대규모 시장 형성이 예상되고 있어 경제적 기대효과를 기대할 수 있다.

Coherence Time Estimation for Performance Improvement of IEEE 802.11n Link Adaptation (IEEE 802.11n에서 전송속도 조절기법의 성능 향상을 위한 Coherence Time 예측 방식)

  • Yeo, Chang-Yeon;Choi, Mun-Hwan;Kim, Byoung-Jin;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.232-239
    • /
    • 2011
  • IEEE 802.11n standard provides a framework for new link adaptation. A station can request that another station provide a Modulation and Coding Scheme (MCS) feedback, to fully exploit channel variations on a link. However, if the time elapsed between MCS feedback request and the data frame transmission using the MCS feedback becomes bigger, the previously received feedback information may be obsolete. In that case, the effectiveness of the feedback-based link adaptation is compromised. If a station can estimate how fast the channel quality to the target station changes, it can improve accuracy of the link adaptation. The contribution of this paper is twofold. First, through a thorough NS-2 simulation, we show how the coherence time affects the performance of the MCS feedback based link adaptation of 802.11n networks. Second, this paper proposes an effective algorithm for coherence time estimation. Using Allan variance information statistic, a station estimates the coherence time of the receiving link. A proposed link adaptation scheme considering the coherence time can provide better performance.

Comparison of Speed by Type of Wireless LAN (Wireless LAN의 종류별 속도 비교)

  • Kim, Jin;Koo, Sangsoo;Lee, Geonwoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.19-20
    • /
    • 2018
  • This paper distinguish between the types of LANs used to connect the internet used by many in the fourth industrial era and compare speeds. 802.11 is fastest and it's running at 300Mbps. And second fastest is running at 54Mbps. In compare second, 802.11n is faster second at six times. So we can prediction the wireless lan's transmission speed will be faster in future.

  • PDF

MAC Performance Improvement by Selective Use of DCF and PCF Protocols for IEEE 802.11 Wireless LANs (무선랜에서 망 상태에 따른 DCF와 PCF 프로토콜의 선택적인 사용을 통한 MAC 성능 향상)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.89-95
    • /
    • 2011
  • The distributed coordination function (DCF) and point coordination function (PCF) protocols are the basic MAC protocols for legacy IEEE 802.11, IEEE 802.11a, IEEE 802.11b, IEEE 802.11e, IEEE 802.11g and IEEE 802.11n wireless LANs. When the DCF protocol is used for the various versions of IEEE 802.11 wireless LANs, the MAC performance seriously degrades due to the collisions among the stations (STAs) as more and more STAs attempt to transmit their data frames. On the other hand, the PCF MAC performance becomes poor when many STAs exist in IEEE 802.11 wireless LANs, however, only small number of STAs actually attempt to transmit their data frames. In this paper, we propose the algorithm for improving the MAC performance by selectively using the DCF and PCF protocols according to the state of IEEE 802.11 wireless LANs. Numerical examples are presented to show the MAC performance improvement by the selective use of the DCF and PCF protocols according to the network state.

A Study on efficient transmission performance improvement Considering the security in the wireless LAN environment (무선랜 환경에서 보안을 고려한 효율적 전송성능 향상에 관한 연구)

  • Hwang, Seong-Kyu;Han, Seung-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.837-846
    • /
    • 2013
  • Recently, new technologies based on wireless LAN is being studied because utilization on smart phone using Wi-Fi is increased. 802.11 b/g/a is universalized wireless LAN technologies based on ISM, the standard developed in 11's working group of IEEE 802. standardization about IEEE 802.11ac that overcame limitation on Blue-ray of IEEE 802.11n or uncompressed video transmission and IEEE 802.af's technologies using TVWS is being actively studied. In this paper, ability of transmission considering the security on AP operated by these technologies have measured and done a comparative analysis with existing wireless LAN environment ability of transmission measured when appling security is more stable than existing ability of transmission in an environment with obstacles and shorten of transmission time is confirmed as a result of analysis.

An analysis of optimal design conditions of LDPC decoder for IEEE 802.11n Wireless LAN Standard (IEEE 802.11n 무선랜 표준용 LDPC 복호기의 최적 설계조건 분석)

  • Jung, Sang-Hyeok;Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.939-947
    • /
    • 2010
  • The LDPC(Low-Density Parity-Check) code, which is one of the channel encoding methods in IEEE 802.11n wireless LAN standard, has superior error-correcting capabilities. Since the hardware complexity of LDPC decoder is high, it is very important to take into account the trade-offs between hardware complexity and decoding performance. In this paper, the effects of LLR(Log-Likelihood Ratio) approximation on the performance of MSA(Min-Sum Algorithm)-based LDPC decoder are analyzed, and some optimal design conditions are derived. The parity check matrix with block length of 1,944 bits and code rate of 1/2 in IEEE 802.11n WLAN standard is used. In the case of $BER=10^{-3}$, the $E_b/N_o$ difference between LLR bit-widths (6,4) and (7,5) is 0.62 dB, and $E_b/N_o$ difference for iteration cycles 6 and 7 is 0.3 dB. The simulation results show that optimal BER performance can be achieved by LLR bit-width of (7,5) and iteration cycle of 7.

Technical problems of Li-Fi wireless network (무선 네트워크 기술 Li-Fi의 문제점)

  • Park, Hyun Uk;Kim, Hyun Ho;Lee, Hoon Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.186-188
    • /
    • 2014
  • In recent years, domestic as well as LTE wireless network of Wi-Fi and most used. In addition, mobile-intensive services that used mainly in our society makes it easier, SNS, application (APP), and file downloads. As such, the amount of data requested, while living at the time of mobile users will want to be safe from the earliest. And the wireless network communications mortality (3G, 4G (LTE), LTE-A) and Wi-Fi (802.11 n-2.4 G H z z H a c-5, 802.11 G), and users are mainly used in the death 4G (LTE), communication Wi-Fi, 802.11 n-2.4 GHz are used most frequently. As above, use the wireless network in order to safely and quickly developed the technology of the Li-Fi. Li-Fi light (visible light) technology to communicate with, and Wi-Fi (802.11 n-2.4 G z H) 100 times faster, LTE-A 66 times faster. However, the current Li-Fi to commercialise the big issue exists. In this paper, there are a lot of existing problems in the commercialization of Li-Fi being used in Wi-Fi, and a comparative analysis.

  • PDF