• Title/Summary/Keyword: 802.11g WLAN

Search Result 58, Processing Time 0.027 seconds

Design of Triple-Band Planar Monopole Antenna (삼중대역 평면형 모노폴 안테나 설계)

  • Lee, Dong-Cheol;Hwang, Ho-Soon;Chang, Jae-Sam;Lim, Jung-Sup;Lee, Mun-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.335-340
    • /
    • 2005
  • In this paper, the triple-band planar monopole antennas are designed for cellular communication, WiBro and WLAN(IEEE802.llb/g) communication and WLAN(IEEE802.lla) communication of 5GHz band. Various types of antennas are designed and examined experimentally as bended in the low and middle band radiation elements to decrease antennas size and increased radiation elements width to improve bandwidth. The proposed antennas are improved by 11% in antenna size with bended low-band radiation elements down and are extended by 30%$\sim$40% in bandwidth by increasing the width of the radiation element at 800MHz band.

  • PDF

Throughput Analysis of the IEEE 802.11g DCF with ERP-OFDM Parameters (IEEE 802.11g ERP-OFDM 파라미터 기준 DCF 처리율 분석)

  • Kang, Koo-Hong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.1-11
    • /
    • 2011
  • A lot of works on the throughput analysis of the IEEE 802.11 DCF have been studied since last few years. However, we should predict the throughput of the IEEE 802.11g that we mostly use today because the existing numerical results do not consider exactly the IEEE 802.11g with the physical layer ERP-OFDM parameters. In particular, we might have different results in the working WLAN s compared with the simple predictions of the throughput using the previous results. In this paper, we directly monitor the ERP-OFDM physical layer parameters on the operating WLANs, and then analyze the saturated DCF throughput with the well-known analytic model. Moreover, we measure the bandwidth utilization on the real WLANs working with FTP services, and then compare them with the analytic results. According to the experiment results, we confirm the usefulness of the analytic models which assume the saturated traffic sources.

Design and Implementation of IEEE 802.11i MAC Layer (IEEE 802.11i MAC Layer 설계 및 구현)

  • Hong, Chang-Ki;Jeong, Yong-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.640-647
    • /
    • 2009
  • IEEE 802.11i is an amendment to the original IEEE 802.11/b,a,g standard specifying security mechanism by stipulating RSNA for tighter security. The RSNA uses TKIP(Temporal Key Integrity Protocol) and CCMP(Counter with CBC-MAC Protocol) instead of old-fashioned WEP(Wired Equivalent Privacy) for data encryption. This paper describes a design of a communication security engine for IEEE 802.11i MAC layer. The design includes WEP and TKIP modules based on the RC4 encryption algorithm, and CCMP module based on the AES encryption algorism. The WEP module suffices for compatibility with the IEEE 802.11 b,a,g MAC layer. The CCMP module has about 816.7Mbps throughput at 134MHz, hence it satisfies maximum 600Mbps data rate described in the IEEE 802.11n specifications. We propose a pipelined AES-CCMP cipher core architecture, which has lower hardware cost than existing AES cores, because CBC mode and CTR mode operate at the same time.

Design and Fabrication of Dual-Band Patch Antenna with Bridge for WLAN Applications (WLAN용 이중대역 브리지 패치 안테나설계 및 제작)

  • Kim, Kab-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.547-551
    • /
    • 2010
  • In this paper, Double rectangular patch with 4-bridges is investigated for solution of IEEE 802.11b/g(2.4GHz) and 802.11a(5.7GHz). Rectangular patch for 5.7GHz frequency band is printed on the PCB substrate and connected to another rectangular patch for 2.4GHz frequency band with 4-bridges to obtain dual band operation in a antenna element. The proposed antenna has a low profile and is fed by $50{\Omega}$ coaxial line. The dielectric constant of the designed antenna substrate is 3.27. Two rectangular patches have each resonance frequencies that are 2.4GHz and 5.7GHz. A dual-band characteristic is shown as connecting two rectangular patch using four bridges. Also, the proposed antenna is shown input return loss that is below -10dB at 2.4GHz and 5.7GHz of WLAN(Wireless LAN).

Double Square Patch Antenna with Inductive Bridges for WLAN Dual-Band (인덕티브 브릿지를 가진 WLAN 이중 대역 이중 사각 패치 안테나)

  • Yang, Chan-Woo;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2615-2618
    • /
    • 2009
  • Double rectangular patch with 4-bridges is investigated for solution of IEEE 802.11b/g (2.4 GHz) and 802.11a (5.5 GHz). Rectangular patch for 5.5 GHz frequency band is printed on the PCB substrate and connected to another rectangular patch for 2.4 GHz frequency band with 4-bridges to obtain dual band operation in an antenna element. 4-bridges can modify the desired frequency band from its original frequency band by changing its width. Gain of 2.4 GHz patch is 5 dBi and 5.5 GHz patch is 3.7 dBi at ${\theta}=0^{\circ}$.

A Generalized Markov Chain Model for IEEE 802.11 Distributed Coordination Function

  • Zhong, Ping;Shi, Jianghong;Zhuang, Yuxiang;Chen, Huihuang;Hong, Xuemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.664-682
    • /
    • 2012
  • To improve the accuracy and enhance the applicability of existing models, this paper proposes a generalized Markov chain model for IEEE 802.11 Distributed Coordination Function (DCF) under the widely adopted assumption of ideal transmission channel. The IEEE 802.11 DCF is modeled by a two dimensional Markov chain, which takes into account unsaturated traffic, backoff freezing, retry limits, the difference between maximum retransmission count and maximum backoff exponent, and limited buffer size based on the M/G/1/K queuing model. We show that existing models can be treated as special cases of the proposed generalized model. Furthermore, simulation results validate the accuracy of the proposed model.

A Study and Implementation of Multimedia Display User Interface using IEEE 802.11g WLAN based on Embedded System (임베디드 시스템 기반 IEEE 802.11g 무선 랜 환경에서의 멀티미디어 디스플레이 사용자 인터페이스에 관한 연구 및 구현)

  • Eom, Eun-Yong;Moon, Seung-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.931-934
    • /
    • 2007
  • 멀티미디어 디스플레이 시장현황과 성장추이를 보면 현재 멀티미디어 디스플레이는 '진화 중'이라는 표현이 적당할 것으로 보인다. 다양한 종류의 시스템을 인식시키기 위한 호환성이 개선됐고 네트워크 기능 까지 추가 되는 등 계속해서 여러 가지 기술이 응집되고 있다. 무선 랜은 랜 케이블이 없어도 되기 때문에 케이블 연결을 최소화해야 하는 멀티미디어 디스플레이에 필요한 요소이다. 본 논문에서는 IEEE 802.11g wireless mini pci를 탑재한 ARM계열 임베디드 장비에서 C/C++를 사용하여 보다 효율적이고 뛰어난 uClinux기반의 멀티미디어 디스플레이 무선 랜 네트워크 사용자 인터페이스의 구현에 대해서 논의 하고자 한다.

  • PDF

Packet Scheduling Scheme to Enhance Throughput at IEEE 802.11e WLAN System (IEEE 802.11e 무선 LAN 시스템에서 서비스 처리율 증대를 위한 패킷 스케줄링 기법)

  • Jang Jae-Shin;Jeon Hyung-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4A
    • /
    • pp.412-420
    • /
    • 2006
  • With the appearance of various types of traffic services in communication networks, a study on QoS(Quality of Service) packet scheduling mechanisms which can support differentiated service to each traffic service becomes very important. To meet this requirement, IEEE 802.11 Working Group established the IEEE 802.11e MAC protocol which categorizes every traffic services into 4 access categories(AC) and provides the differentiated service to each AC. In addition, the physical layer of IEEE 802.11a/g standards provide up to 54 Mbps transmission rate per one wireless LAN terminal. However, since the radio resource is hardly limited in wireless channel, it is necessary to find an efficient packet scheduling scheme to maximize the transmission efficiency. Therefore, in this paper, we proposed a new packet scheduling scheme that can enhance the total throughput by setting different contention windows(CW) of CSMA-CA channel access scheme to each wireless LAN terminal according its current channel states. Numerical results derived from using NS-2 network simulator have shown that our proposed packet scheduling scheme can enhance the performance of IEEE 802.11e more and more.

Cooperative MAC Protocol Using Active Relays for Multi-Rate WLANs

  • Oh, Chang-Yeong;Lee, Tae-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.463-471
    • /
    • 2011
  • Cooperative communications using relays in wireless networks have similar effects of multiple-input and multiple-output without the need of multiple antennas at each node. To implement cooperation into a system, efficient protocols are desired. In IEEE 802.11 families such as a/b/g, mobile stations can automatically adjust transmission rates according to channel conditions. However throughput performance degradation is observed by low-rate stations in multi-rate circumstances resulting in so-called performance anomaly. In this paper, we propose active relay-based cooperative medium access control (AR-CMAC) protocol, in which active relays desiring to transmit their own data for cooperation participate in relaying, and it is designed to increase throughput as a solution to performance anomaly. We have analyzed the performance of the simplified AR-CMAC using an embedded Markov chain model to demonstrate the gain of AR-CMAC and to verify it with our simulations. Simulations in an infrastructure network with an IEEE 802.11b/g access point show noticeable improvement than the legacy schemes.

A Secure WLAN Authentication Scheme

  • Singh, Rajeev;Sharma, Teek Parval
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.176-187
    • /
    • 2013
  • Message replay, malicious Access Point (AP) associations and Denial of Service (DoS) attacks are the major threats in Wireless LANs. These threats are possible due to a lack of proper authentication and insecure message communications between wireless devices. Current wireless authentication & key exchange (AKE) schemes and security protocols (WEP, WPA and IEEE 802.11i) are not sufficient against these threats. This paper presents a novel Secure WLAN Authentication Scheme (SWAS). The scheme introduces the delegation concept of mobile authentication in WLANs, and provides mutual authentication to all parties (Wireless Station, Access Point and Authentication Server). The messages involved in the process serve both authentication and key refreshing purposes. The scheme enhances the security by protecting the messages through cryptographic techniques and reduces the DoS impact. The results showed that cryptographic techniques do not result in extra latencies in authentication. The scheme also reduces the communication cost and network overhead.

  • PDF