• Title/Summary/Keyword: 802.11a/g/n

Search Result 21, Processing Time 0.029 seconds

Analysis of QoS in WLAN : Analysis of 802.11ac wireless LAN service in Korea (국내 무선 랜 서비스 현황 분석)

  • Kim, HyunHo;Bruce, Ndibanje;Jang, Won-Tae;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.104-107
    • /
    • 2014
  • Nowadays, smart devices such as smart phones, tablets PC, etc... are exchanging messages using WLAN(Wi-Fi) technologies for sending and receiving messages. With the growth of the smart devices users, the WLAN (Wi-Fi) medium communication could be loaded and then the Quality of Service is undesirable. Currently, there are five types of Wireless LAN such as802.11 a / b / g / n / ac supporting the communication between smart devices and the most used it WLAN 802.11n. Unfortunately, if the WLAN 802.11n is being used by a lot of users, there is poor Quality of Service due to the interference. In this paper, we analyze the Quality of Service provided by the 802.11n and compare with the next generation of wireless 802.11ac.

  • PDF

Design and Implementation of IEEE 802.11i MAC Layer (IEEE 802.11i MAC Layer 설계 및 구현)

  • Hong, Chang-Ki;Jeong, Yong-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.640-647
    • /
    • 2009
  • IEEE 802.11i is an amendment to the original IEEE 802.11/b,a,g standard specifying security mechanism by stipulating RSNA for tighter security. The RSNA uses TKIP(Temporal Key Integrity Protocol) and CCMP(Counter with CBC-MAC Protocol) instead of old-fashioned WEP(Wired Equivalent Privacy) for data encryption. This paper describes a design of a communication security engine for IEEE 802.11i MAC layer. The design includes WEP and TKIP modules based on the RC4 encryption algorithm, and CCMP module based on the AES encryption algorism. The WEP module suffices for compatibility with the IEEE 802.11 b,a,g MAC layer. The CCMP module has about 816.7Mbps throughput at 134MHz, hence it satisfies maximum 600Mbps data rate described in the IEEE 802.11n specifications. We propose a pipelined AES-CCMP cipher core architecture, which has lower hardware cost than existing AES cores, because CBC mode and CTR mode operate at the same time.

Technical problems of Li-Fi wireless network (무선 네트워크 기술 Li-Fi의 문제점)

  • Park, Hyun Uk;Kim, Hyun Ho;Lee, Hoon Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.186-188
    • /
    • 2014
  • In recent years, domestic as well as LTE wireless network of Wi-Fi and most used. In addition, mobile-intensive services that used mainly in our society makes it easier, SNS, application (APP), and file downloads. As such, the amount of data requested, while living at the time of mobile users will want to be safe from the earliest. And the wireless network communications mortality (3G, 4G (LTE), LTE-A) and Wi-Fi (802.11 n-2.4 G H z z H a c-5, 802.11 G), and users are mainly used in the death 4G (LTE), communication Wi-Fi, 802.11 n-2.4 GHz are used most frequently. As above, use the wireless network in order to safely and quickly developed the technology of the Li-Fi. Li-Fi light (visible light) technology to communicate with, and Wi-Fi (802.11 n-2.4 G z H) 100 times faster, LTE-A 66 times faster. However, the current Li-Fi to commercialise the big issue exists. In this paper, there are a lot of existing problems in the commercialization of Li-Fi being used in Wi-Fi, and a comparative analysis.

  • PDF

Technologies trend for Wireless LAN (무선 LAN 통신망의 기술 동향)

  • Gang, Yeong-Jin;Kim, Sung-Nam;Kang, Sin-Ill;Lee, Yeong-Sil;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.255-258
    • /
    • 2011
  • Wi-Fi is a rapidly spreading communications network with Smart phone's publication, the technology has become Ubiquitous-based core network which is connected to personal computers, laptops, and tablet PC. Wi-Fi can send currently a variety of data standard due to developed wireless LAN communications network. One of Wi-Fi standard protocols, which is IEEE 802.11n, use 2.4GHz and 5GHz band. 2.4GHz band is used for 802.11b/g protocol because wavelength is long, diffraction and receiving distance is enough to connect other device. 5GHz band has more available channels to use than 2.4GHz band, so there is no frequency interference of other wireless device such as Bluetooth, RFID. Moreover, there is low interference between channels due to small users in each bandwidth level. In the thesis, we are going to analyze 802.11a/b/g protocol which has used since the beginning of Wi-Fi protocol and 802.11n protocol which is used lately. Furthermore, we look into development and direction for standardization of the next generation wireless LANs which are 802.11ac and 802.11ad. In addition, we will consider for the security, vulnerabilities and its countermeasure in Wireless LAN.

  • PDF

A Study on efficient transmission performance improvement Considering the security in the wireless LAN environment (무선랜 환경에서 보안을 고려한 효율적 전송성능 향상에 관한 연구)

  • Hwang, Seong-Kyu;Han, Seung-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.837-846
    • /
    • 2013
  • Recently, new technologies based on wireless LAN is being studied because utilization on smart phone using Wi-Fi is increased. 802.11 b/g/a is universalized wireless LAN technologies based on ISM, the standard developed in 11's working group of IEEE 802. standardization about IEEE 802.11ac that overcame limitation on Blue-ray of IEEE 802.11n or uncompressed video transmission and IEEE 802.af's technologies using TVWS is being actively studied. In this paper, ability of transmission considering the security on AP operated by these technologies have measured and done a comparative analysis with existing wireless LAN environment ability of transmission measured when appling security is more stable than existing ability of transmission in an environment with obstacles and shorten of transmission time is confirmed as a result of analysis.

Design and Implementation of Economical Smart Wall Switch with IEEE 802.11b/g/n

  • Myeong-Chul Park;Hyoun-Chul Choi;Cha-Hun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.103-109
    • /
    • 2023
  • In this paper, we propose a smart wall switch based on IEEE 802.11b/g/n standard 2.4GHz band communication. As the 4th industrial era evolves, smart home solution development is actively underway, and application cases for smart wall switches are increasing. Most of the Chinese products that preoccupy the market through price competitiveness use Bluetooth and Zigbee communication switches. However, while ZigBee communication is low power, communication speed is slower than Bluetooth and network configuration through a separate hub is additionally required. The Bluetooth method has problems in that the communication range and speed are lower than Wi-Fi communication, the communication standby time is relatively long, and security is weak. In this study, an IEEE 802.11b/g/n smart wall switch applied with Wi-Fi communication technology was developed. In addition, through the two-wire structure, it is designed so that no additional cost is incurred through the construction of a separate neutral line in the building. The result of the study is more than 30% cheaper than the existing wall switch, so it is judged that it will be able to preoccupy the market not only in terms of technological competitiveness but also price competitiveness.

MAC Performance Improvement by Selective Use of DCF and PCF Protocols for IEEE 802.11 Wireless LANs (무선랜에서 망 상태에 따른 DCF와 PCF 프로토콜의 선택적인 사용을 통한 MAC 성능 향상)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.89-95
    • /
    • 2011
  • The distributed coordination function (DCF) and point coordination function (PCF) protocols are the basic MAC protocols for legacy IEEE 802.11, IEEE 802.11a, IEEE 802.11b, IEEE 802.11e, IEEE 802.11g and IEEE 802.11n wireless LANs. When the DCF protocol is used for the various versions of IEEE 802.11 wireless LANs, the MAC performance seriously degrades due to the collisions among the stations (STAs) as more and more STAs attempt to transmit their data frames. On the other hand, the PCF MAC performance becomes poor when many STAs exist in IEEE 802.11 wireless LANs, however, only small number of STAs actually attempt to transmit their data frames. In this paper, we propose the algorithm for improving the MAC performance by selectively using the DCF and PCF protocols according to the state of IEEE 802.11 wireless LANs. Numerical examples are presented to show the MAC performance improvement by the selective use of the DCF and PCF protocols according to the network state.

An Optimal Design Guide for Campus wireless LAN by Evaluating Performance Measurements in IEEE 802.11n-based Networks (IEEE 802.11n 기반에서 성능측정을 통한 최적의 캠퍼스 무선 랜 설계)

  • Kim, Bang Ryong;Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.9-23
    • /
    • 2013
  • In recent days, there are many researches of wireless LAN services as the communication environment of wireless LAN are so improved that a lot of services are available in wireless environments. The frequency of the wireless LAN is a general resource that can be used to everyone without any permission. Many technologies using this ISM (Industry Science Medical) frequency band are developed fast and widely. But, as many devices use the same frequency band at th same time, the service quality is degraded and the speed of the service rate id degraded by the result of the interference. For overcome this problem, we must provide the new technology of the mobile devices and a new cell design scheme for obtaining maximum throughput that considering the wireless environments effectively. In this paper, we explain the main technology at the IEEE 802.11n environments and proposes the optimal cell design and reference model for gaining maximum performance to many mobile devices at the same time by investigating real environment testing results.

Wireless Network Engineering for PC-to-TV Solution (PC-to-TV 를 위한 댁내 무선 환경 구축 기술)

  • Lee, Young-Tark;Kim, Gi-Don;Heo, Sung-Phil;Yoon, Byeong-Wan;Lee, Mi-Suk
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.73-76
    • /
    • 2007
  • 국내의 홈네트워크 서비스는 홈오토메이션 제공 중심에서 엔터테인먼트 요소가 강화된 멀티미디어 기반의 네트워크 서비스로 변모하고 있다. 홈네트워크를 구성하는 요소 중 PC와 TV는 댁내에 멀티미디어 기반의 네트워크 서비스를 구축하는데 있어 가장 중요한 역할을 수행할 것으로 예상된다. 그에 따라 PC와 TV 간 네트워크를 구축하는 것이 중요한 이슈로 떠오르고 있다. 그러나 PC와 TV 간 네트워크 구축을 위해서는 댁내 노출 배선 등의 문제로 인하여 무선 기술을 사용하는 것이 유용하지만, 현재 기존 무선 전송 기술(IEEE 802.11 a/b/g, Bluetooth 등)들은 HD 등의 대용량 컨텐츠 전송 및 QoS 를 제공하기가 어렵다. 따라서 본 논문에서는 PC와 TV 간 무선으로 네트워크 구축시 고려사항 및 무선전송기술개발 요소를 살펴본다. 특히 무선전송기술로는 고속 데이터 전송이 가능한 UWB(Ultra Widebnad)와 IEEE 802.11n 기술을 중심으로 고려한다. 또한 UWB와 IEEE 802.11n을 이용하여 네트워크가 구축되었을 때 제공 가능한 서비스 시나리오에 대해서도 소개한다.

  • PDF

A Small Broadband Antenna for Wibro/WLAN/Mobile WiMAX (Wibro/WLAN/Mobile WiMAX용 소형 광대역 안테나)

  • Ko, Jeong-Ho;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.568-575
    • /
    • 2011
  • In this paper, we propose a small broadband antenna for mobile device. The proposed antenna consists of a printed rectangular monopole antenna and a parastic element connected to ground using narrow meander line and it is designed on a FR-4 substrate that has a thickness of 0.8 mm and a dielectric constant of 4.4. The FR-4 substrate's size is 50 mm${\times}$90 mm comparable to the real mobile device. The fabricated antenna's size is 12.5 mm${\times}$10.5 mm${\times}$0.8 mm and the measurement shows -10 dB return loss bandwidth of 2,200~6,000 MHz and gains of 2.86~4.01 dBi. Accordingly, the proposed antenna can support mobile device for WiBro(2,300~2,380 MHz), WLAN(IEEE 802.11b/g/n: 2,400~2,480 MHz, IEEE 802.11a: 5,150~5,825 MHz), and mobile WiMAX(IEEE 802.16e : 2,500~2,690 MHz, 3,400~3,600 MHz) service bands.