• Title/Summary/Keyword: 7xxx Al alloy

Search Result 15, Processing Time 0.019 seconds

A study on Sintering Characteristics of Commercial 7xxx Series Al Alloy Powders (상용 7xxx Series Al 합금계 혼합분말의 소결 특성)

  • ;;;Panyu
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.69-73
    • /
    • 2004
  • The sintering characteristics of commercial 7xxx series Al-Zn-Mg-Cu alloy have been investigated. Sintering system of this blended elemental powder has aspects of both transient and supersolidus liquid phase sintering. Transient liquids occur when the constitution point during sintering lies in a solid phase region but where the sintering temperature is greater than either the melting point of one of the constituent or a eutectic temperature. Supersolidus liquid phase sintering occurs when a preblended powder is heated to a temperature between the solidus and liquids. However, these reaction were restrained their inter diffusion due to the appearance of the oxide film. Thus, 7xxx series Al alloy is extremely sensitive to process variables, including particle size, holding time and sintering temperature. Therefore, above phenomenons were observed formation and behaviour of the liquid by using SEM and DSC.

The Effect of Mg, Zn, Si wt(%) on the Extrudability of 7xxx Al Alloy (Mg, Zn, Si 성분이 7xxx 계 알루미늄 합금의 압출성에 미치는 영향)

  • Ham, Hyun-Wook;Kim, Byung-Min;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.148-157
    • /
    • 1999
  • The objective of this study is to investigate the effect of three main chemical compositions(Mg, Zn, Si) on extrudability of 7xxx Al alloy with high tensile strength. A few Al alloys based on 7xxx alloys were metal mold cast with various weight*%) of Mg 0.3-1.2%, Zn 5.0-8.0% and Si 0.4-0.7%, to envestigate the effects of extrudability, as well as mechanical properties. To measure the extrudability of cast billets, maximum extrusion pressure and surface temperature at die exit before tearing occurs were obtained by experiment and simulation of thermo-viscoplastic F.E.M. Also the yield and tensile strength of extruded products were tested.

  • PDF

Sintering Behavior of 7xxx Series Al Blended Powder with Variation of Heating Rate (7xxx계 Al 혼합분말의 승온속도에 따른 소결거동)

  • Kang Shin Pil;Min Kyung Ho;Park Hyun Woo;Chang Si-Young;Kim Young Do
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.131-135
    • /
    • 2005
  • 7xxx series Al alloy has the most attractive properties including its excellent high specific strength, stress corrosion cracking and corrosion-resistance. However, in case of the Al-Zn system, the liquid phase has a transient aspect because of the high solid solubility of Zn in Al. Therefore, transient liquid phase sintering behavior was observed during the sintering process. And the amount of liquid and its duration were influenced by the process variables including heating rate and final sintering temperature. At high heating rates($100^{\circ}C/min$), the liquid fraction increased during sintering because diffusion was minimized and therefore local saturation could easily occur. The sintered density increased with increasing heating rate.

6xxx Series Al Alloy Sheets with High Formability Produced by Twin-roll Strip Casting and Asymmetric Rolling (쌍롤 박판주조법 및 이속압연으로 제조한 고성형성 6xxx계 Al 합금 판재)

  • Kim, Hong-Kyu;Cho, Jae-Hyung;Kim, Hyoung-Wook;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.503-509
    • /
    • 2012
  • We report on the feasibility of producing 6xxx series Al alloy sheets using a combination of twin-roll strip casting and asymmetric rolling. The Al alloy sheets produced in this study exhibited an excellent formability ($\bar{r}=1.2$, ${\Delta}r=0.17$) and mechanical properties (${\sigma}_{TS}{\sim}260MPa$, ${\varepsilon}>30%$), which cannot be feasibly obtained via the conventional technique based on ingot casting and conventional rolling. The enhanced formability as evaluated in terms of $\bar{r}$ and ${\Delta}r$ was clarified by examining the evolution of textures associated with strip casting and subsequent thermo-mechanical treatments. The evaluation of the formability leads us to conclude that the combined technique based on strip casting and asymmetric rolling is a feasible process for enhancing the formability of Al alloy sheets to a level beyond which the conventional technique can reach.

Stress Corrosion Cracking of High Strength Al-Zn-Mg-Cu Aluminum Alloy with Different Compositions (고강도 Al-Zn-Mg-Cu 합금에서 조성에 따른 응력부식균열 특성)

  • Kim, Jun-Tak;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.109-113
    • /
    • 2008
  • High strength 7xxx series Al-Zn-Mg alloy have been investigated for using light weight automotive parts especially for bump back beam. The composition of commercial 7xxx aluminum has the Zn/Mg ratio about 3 and Cu over 2 wt%, but this composition isn't adequate for appling to automotive bump back beam due to its high resistance to extrusion and bad weldability. In this study the Zn/Mg ratio was increased for better extrusion and Cu content was reduced for better welding. With this new composition we investigated the effect of composition on the resistivity against stress corrosion cracking. As the Zn/Mg ratio is increased fracture energy obtained by slow strain rate test was decreased, which means degradation of SCC resistance. While the fracture energy was increased with Cu contents although it is below 1%, which means improvement of SCC resistance. These effects of composition change on the SCC resistivity were identified by observing the fracture surface and crack propagation.

The Fabrication of High Strength 7XXX Aluminum Alloy Powders by Centrifugal Disc Atomization (원심분무법에 의한 고강도 7XXX 알루미늄 합금 분말의 제조)

  • Lee, Tae-Hang;Im, Seong-Moo;Cho, Sung-Suk
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.528-537
    • /
    • 1990
  • 7XXX aluminum alloy powders produced by the self-manufactured rotating disc atomizer were investigated to determine the influence of the atomization parameters on the particle size distributions in air atmosphere. The particle size distributions are almost always bimodal with the dominant mode on the large particle size. Average powder size of 7XXX aluminum alloy is $74/{\mu}m~125/{\mu}m$ when melt is poured with the rate of 9g /sec at 730$^{\circ}C$ on a rotating disc of 30㎜ diameter at 6300rad/sec. The mass of finer particle increased when disc diameter, angular velocity, pouring temperature increased and pouring rate decreased. The powder shapes of bimodal change from acicular to tear-drop and from tear-drop to ligament with increasing powder size. Powder shape was determined by the atomization mechanism and oxidation in liquid state. Microstructure of powders appeared to be cell and cellular dendrite. The SDAS of Al-7.9wt%Zn-2.4wt%Mg-1.5wt%Cu-0.9wt%Ni Powders is $0.8{\mu}m~1.0{\mu}m$ for the powders of $size+44{\mu}m~53{\mu}m$ and $1.6{\mu}m∼1.8{\mu}m$ for the powders of $size+105{\mu}m~125{\mu}m$, repectively.

  • PDF