• Title/Summary/Keyword: 7 DOF

Search Result 141, Processing Time 0.027 seconds

Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction (7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘)

  • Kim, Young-Loul;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.

An Uncertainty Analysis of a Compensation Method for the Positioning Error of Three-DOF Manipulator (3 자유도 위치 결정 기구의 위치 오차 평가 및 보정법에 대한 불확도 분석)

  • Park Jae-Jun;Eom Hyung-Wook;Cho Nahm-Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.51-58
    • /
    • 2006
  • This study analyzes the uncertainty of the compensation method of a sensing error of three-DOF measuring system. This compensation method utilizes a reference coordinate system using a three point by moving a position of an endpoint of a three-DOF manipulator. The coordinate transformation between the three-DOF manipulator and the measuring system is identified by the reference coordinate system. According to the concept of this compensation method, each positioning error at any position of the end-point of the manipulator is derived. Uncertainty analyses of the compensation values on the basis of sensitivity analysis and Monte Carlo simulation are used to investigate a feasibility and effectiveness of the compensation method.

Analysis on Active spring effect in human-body having redundant actuation with application to motion frequency (여유구동을 지닌 인체의 능동스프링 현상에 대한 해석과 운동주파수 제어방식으로의 적용)

  • Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.977-989
    • /
    • 1999
  • The purpose of this study is to analyze how the human body having more muscles than its degree-of-freedom modulates an effective stiffness using redundant actuation, and to apply this concept to the design and control of advanced machines which requires adaptable spring. To investigate the adaptable stiffness phenomenon due to redundant actuation in the human body, this paper derives a general stiffness model of the Human body. In particular, for a planar 1 DOF human arm model, a planar 2 DOF human arm model, a spherical 3 DOF shoulder model, a 4 DOF human arm model, and a 7 DOF human arm model, the required nonlinear geometry ad the number of required actuator for successful modulation of the effective stiffness are analyzed along with a load distribution method for modulation of the required stiffness of such systems. Secondly, the concept of motion frequency modulation is introduced to show the usefulness of adaptive stiffness modulation. The motion frequency modulation represents a control of stiffness and / or inertia properties of systems. To show the effectiveness of the proposed algorithm, simulations are performed for 2 DOF anthropomorphic robot.

  • PDF

DOF Correction of Heterogeneous Stereoscopic Cameras (이종 입체영상 카메라의 피사계심도 일치화)

  • Choi, Sung-In;Park, Soon-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.169-179
    • /
    • 2014
  • In this paper, we propose a DOF (Depth of Field) correction technique by determining the values of the internal parameters of a 3-D camera which consists of stereoscopic cameras of different optical properties. If there is any difference in the size or the depth range of focused objects in the left and right stereoscopic images, it could cause visual fatigue to human viewers. The object size of in the stereoscopic image is corrected by the LUT of zoom lenses, and the forward and backward DOF are corrected by the object distance. Then the F-numbers are determined to adjust the optical properties of the camera for DOF correction. By applying the proposed technique to a main-sub type 3-D camera using a GUI-based DOF simulator, the DOF of the camera is automatically corrected.

Tension Based 7 DOEs Force Feedback Device: SPIDAR-G

  • Kim, Seahak;Yasuharu Koike;Makoto Sato
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • In this paper, we intend to demonstrate a new intuitive force-feedback device for advanced VR applications. Force feed-back for the device is tension based and is characterized by 7 degrees of freedom (DOF); 3 DOF for translation, 3 DOF for rotation, and 1 DOF for grasp). The SPIDAR-G (Space Interface Device for Artificial Reality with Grip) will allow users to interact with virtual objects naturally by manipulating two hemispherical grips located in the center of the device frame. We will show how to connect the strings between each vertex of grip and each extremity of the frame in order to achieve force feedback. In addition, methodologies will be discussed for calculating translation, orientation and grasp using the length of 8 strings connected to the motors and encoders on the frame. The SPIDAR-G exhibits smooth force feedback, minimized inertia, no backlash, scalability and safety. Such features are attributed to strategic string arrangement and control that results in stable haptic rendering. The design and control of the SPIDAR-G will be described in detail and the Space Graphic User Interface system based on the proposed SPIDAR-G system will be demonstrated. Experimental results validate the feasibility of the proposed device and reveal its application to virtual reality.

A study on the effects of active suspension upon vehicle handling (능동 현가장치가 차량의 핸들링에 미치는 영향에 관한 연구)

  • Lee, Jung-Sup;Kwon, Hyok-Jo;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.603-610
    • /
    • 1998
  • This paper develops a 7 DOF vehicle model to study the effects of the active suspension on ride. The model is used to derive a control law for the active suspension using a full state linear optimal control technique. A wheelbase preview type active suspension is also considered in the control law derivation. The time delay between wheelbases is approximated using Pade approximation technique. The ride model is extended to a 14 DOF handling model. The 14 DOF handling model includes lateral, longitudinal, yaw and four wheel spin motions in addition to the 7 DOF ride model. A control law which is derived considering only ride related parameters is used to study the effects of the active suspension on a vehicle handling. J-turn maneuver simulation results show that the active suspension has a slower response in lateral acceleration and yaw rate, a bigger steady state lateral acceleration and an oversteer tendency. Lane changing maneuver simulation results show that the active suspension has a little bigger lateral acceleration but a much smaller roll angle and roll motion. Braking maneuver simulation results show that the active suspension has a much smaller pitch angle and pitch motion.

Identification of eighteen flutter derivatives of an airfoil and a bridge deck

  • Chowdhury, Arindam Gan;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.187-202
    • /
    • 2004
  • Wind tunnel experiments are often performed for the identification of aeroelastic parameters known as flutter derivatives that are necessary for the prediction of flutter instability for flexible structures. Experimental determination of all the eighteen flutter derivatives for a section model facilitates complete understanding of the physical mechanism of flutter. However, work in the field of identifying all the eighteen flutter derivatives using section models with all three degree-of-freedom (DOF) has been limited. In the current paper, all eighteen flutter derivatives for a streamlined bridge deck and an airfoil section model were identified by using a new system identification technique, namely, Iterative Least Squares (ILS) approach. Flutter derivatives of the current bridge and the Tsurumi bridge are compared. Flutter derivatives related to the lateral DOF have been emphasized. Pseudo-steady theory for predicting some of the flutter derivatives is verified by comparing with experimental data. The three-DOF suspension system and the electromagnetic system for providing the initial conditions for free-vibration of the section model are also discussed.

Whirl Flutter Analysis of a 2-DOF Rotor-Nacelle System Using Quasisteady Aerodynamic Theory (준정상 공력이론을 이용한 2자유도계 로터-낫셀 시스템의 훨플러터 해석)

  • Kim, Dong-Hyun;Yang, Yong-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.843-850
    • /
    • 2005
  • In this study, simplified whirl flutter analyses using quasisteady aerodynamic theory have been Performed for a 2-DOF tiIt-rotor system with both pitch and Yaw motions of a rotor-nacelle. The present dynamic system consists of the rotor (propeller) , forming the gyroscopic and aerodynamic element, supported horizontally by a pylon that is pivoted at some wing attachment point. Several design parameters for rotor-nacelle system are considered to practically investigate the effects of whirl flutter stability.

An Emphirical Closed Loop Modeling of a Suspension System using a Neural Networks (신경회로망을 이용한 폐회로 현가장치의 시스템 모델링)

  • 김일영;정길도;노태수;홍동표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.384-388
    • /
    • 1996
  • The closed-loop system modeling of an Active/semiactive suspension system has been accomplished through an artificial neural Networks. The 7DOF full model as the system equation of motion has been derived and the output feedback linear quadratic regulator has been designed for the control purpose. For the neural networks training set of a sample data has been obtained through the computer simulation. A 7DOF full model with LQR controller simulated under the several road conditions such as sinusoidal bumps and the rectangular bumps. A general multilayer perceptron neural network is used for the dynamic modeling and the target outputs are feedback to the input layer. The Backpropagation method is used as the training algorithm. The modeling of system and the model validation have been shown through computer simulations.

  • PDF

Precision Displacement Measurement of Three-DOF Micro Motions Using Position Sensitive Detector and Spherical Reflector (PSD와 구면반사를 이용한 3자유도 미소 변위의 정밀측정)

  • 이재욱;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.99-104
    • /
    • 2003
  • A precision displacement measurement system of 3-DOF micro motions is proposed in this paper. The measurement system is composed of two diode lasers, two quadratic PSDs, two beam splitters and a sphere whose surface is highly reflective. In this measurement system, the sphere reflector is mounted on the platform of positioning devices whose 3-DOF translational motions are to be measured, and the sensitive areas of two PSDs are oriented toward the center point of the sphere reflector. Each laser beam emitted from two diode laser sources is reflected at the surface of sphere and arrives at two PSDs. Each PSD serves as a 2-dimensional sensor, providing the information on the 3-dimensional position of the sphere. In this paper, we model the relationship between the outputs of two PSDs and 3-DOF translational motions of the sphere mounted on the object. Based on a deduced measurement model, we perform measurement simulation and evaluate the performance of the proposed measurement system: linearity, sensitivity, and measurement error. The simulation results show that the proposed measurement system can be valid means of precision displacement measurement of 3-dimensional micro motions.