• 제목/요약/키워드: 6DOF: 6 degree-of-freedom

검색결과 113건 처리시간 0.024초

6자유도 진동 흡진기의 기하적 설계 이론 (Geometrical Design Theory of a 6 DOF Vibration Absorber)

  • 장선준;최용제
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.191-199
    • /
    • 2005
  • Many researchers have been investigating the design of multi-mode absorption vibration absorber for multi degree-of-freedom (DOF) system. The approach taken to this problem has been to find the optimized constants of stiffness and damping for the given set of single-DOF absorbers or single multi-DOF absorber attached to a multi degree-of-freedom system. This paper presents a novel geometrical and direct design theory of a 6 DOF vibration absorber via screw theory. Theoretical development is demonstrated by a practical example in which the diagonal stiffness matrix is synthesized using rectangular configuration of springs. The performance of this absorber is simulated by modal analysis.

Dubins 곡선을 이용한 항공기 3자유도 질점 모델의 3차원 경로계획 및 유도 (3-Dimensional Path Planning and Guidance using the Dubins Curve for an 3-DOF Point-mass Aircraft Model)

  • 오수헌;하철수;강승은;목지현;고상호;이용원
    • 한국항공운항학회지
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, we integrate three degree of freedom(3DOF) point-mass model for aircraft and three-dimensional path generation algorithms using dubins curve and nonlinear path tracking law. Through this integration, we apply the path generation algorithm to the path planning, and verify tracking performance and feasibility of using the aircraft 3DOF point-mass model for air traffic management. The accuracy of modeling 6DOF aircraft is more accurate than that of 3DOF model, but the complexity of the calculation would be raised, in turn the rate of computation is more likely to be slow due to the increase of degree of freedom. These obstacles make the 6DOF model difficult to be applied to simulation requiring real-time path planning. Therefore, the 3DOF point-mass model is also sufficient for simulation, and real-time path planning is possible because complexity can be reduced, compared to those of the 6DOF. Dubins curve used for generating the optimal path has advantage of being directly available to apply path planning. However, we use the algorithm which extends 2D path to 3D path since dubins curve handles the two dimensional path problems. Control law for the path tracking uses the nonlinear path tracking laws. Then we present these concomitant simulation results.

극 저주파 범위에서의 인체 머리부 6자유도 진동 측정 및 추정시의 문제점에 대한 연구 (Study on Some Problems in the Measurement and Estimation of 6 Degree of Freedom Head Vibration in Very Low Frequency Range)

  • 이정훈;고홍석;김광준;장한기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.621-626
    • /
    • 2002
  • Two problems in the measurement of 6-DOF head vibration in very low frequency range were investigated in this study. One is how much error was involved in the estimation of three rotational and three translational motion at any specified point from measured 6 translational accelerations. The other is quantitative and qualitative influence of gravity on DC and AC component of the estimated accelerations in 6 degree of freedom, which were derived from pick-ups fixed on a helmet. In the study the effect of nonlinear terms on the estimation of 6 degree of freedom accelerations was negligible but gravity effect must be considered carefully.

  • PDF

An Ultraprecise Machining System with a Hexapod Device to Measure Six-Degree-Of-Freedom Relative Motions Between The Tool And Workpiece

  • Oiwa, Takaaki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.3-8
    • /
    • 2007
  • A machining system that generates accurate relative motions between the tool and workpiece is required to realize ultra precise machining or measurements. Accuracy improvements for each element of the machine are also required. This paper proposes a machining system that uses a compensation device for the six-degree-of-freedom (6-DOF) motion error between the tool and workpiece. The compensation device eliminates elastic and thermal errors of the joints and links due to temperature fluctuations and external forces. A hexapod parallel kinematics mechanism installed between the tool spindle and surface plate is passively actuated by a conventional machine. Then the parallel mechanism measures the 6-DOF motions. We describe the conception and fundamentals of the system and test a passively extensible strut with a compensation device for the joint errors.

Use of equivalent spring method for free vibration analyses of a rectangular plate carrying multiple three-degree-of-freedom spring-mass systems

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.713-735
    • /
    • 2005
  • Due to the complexity of mathematical expressions, the literature concerning the free vibration analysis of plates carrying multiple three-degree-of-freedom (dof) spring-mass systems is rare. In this paper, the three degrees of freedom (dof's) for a spring-mass system refer to the translational motion of its lumped mass in the vertical ($\bar{z}$) direction and the two pitching motions of its lumped mass about the two horizontal ($\bar{x}$ and $\bar{y}$) axes. The basic concept of this paper is to replace each three-dof spring-mass system by a set of equivalent springs, so that the free vibration characteristics of a rectangular plate carrying any number of three-dof spring-mass systems can be obtained from those of the same plate supported by the same number of sets of equivalent springs. Since the three dof's of the lumped mass for each three-dof spring-mass system are eliminated to yield a set of equivalent springs, the total dof of the entire vibrating system is not affected by the total number of the spring-mass systems attached to the rectangular plate. However, this is not true in the conventional finite element method (FEM), where the total dof of the entire vibrating system increases three if one more three-dof spring-mass system is attached to the rectangular plate. Hence, the computer storage memory required by using the presented equivalent spring method (ESM) is less than that required by the conventional FEM, and the more the total number of the three-dof spring-mass systems attached to the plate, the more the advantage of the ESM. In addition, since manufacturing a spring with the specified stiffness is much easier than making a three-dof spring-mass system with the specified spring constants and mass magnitude, the presented theory of replacing a three-dof spring-mass system by a set of equivalent springs will be also significant from this viewpoint.

2 DOF 3D 운동 시뮬례이터 실험 (The Research of 2 DOF 3D Motion Simulator)

  • 김영진;최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.260-260
    • /
    • 2000
  • In this work, we have developed a 2 degree of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two ac servo motors that drive the roll and pitch motion.

  • PDF

Design and Analysis of Double Excited 3-Degree-of-Freedom Motor for Robots

  • Kwon, Byung-Il;Kim, Young-Boong
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.618-625
    • /
    • 2011
  • This paper presents a double excited three degree-of-freedom (3DOF) motor. The proposed 3DOF motor is designed with a laminated structure, making it easy to manufacture. In addition, it has windings on the stator and rotor, and does not require an expensive permanent magnet. We explain the structure, principle of motion, and design of the proposed motor, and perform an analysis of the static characteristics using the two- and three-dimensional finite element methods (3D FEM). The feasibility of 3D FEM analysis is confirmed by comparing the 3D FEM analysis and experimental results for the rolling and pitching motion. We also confirm the occurrence of holding torque in every motion.

정위치 해석해를 가지는 병렬 메카니즘에 관한 분석과 혼합구조 매니퓰레이터로의 활용 (Analysis of Parallel Mechanisms with Forward Position Closed-Form Solution with Application to Hybrid Manipulator)

  • 김희국;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.324-337
    • /
    • 1999
  • In this work, a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. And a 6 DOF hybrid manipulator which consists of a 3-PPR type planar 3 DOF parallel mechanism and a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. Both 3 DOF mechanism modules have closed-form forward position solutions and particularly, 3-PSP spatial module has unique forward position solution. Firstly, the closed-form position analysis and first-order kinematic analysis for the proposed 3-PSP type module are carried out, and the first-order kinematic characteristics are examined via maximum singular value and the isotropic index of the mechanism. It is shown through these analyses that the mechanism has excellent isotrpic property throughout the workspace. Secondly, position and kinematic analysis of the 3-PPR planar module are briefly described. Thirdly, the forward position analysis for the 3-PPR 3-PSP type 6 degree-of-freedom hybrid mechanism consisting of a 3-PPR planar module and a 3-PSP spatial module is performed along with the analysis of the workspace size and first-order kinematic characteristics. The kinematic characteristics of the proposed hybrid manipulator are compared to those of geometrically similar Stewart manipulator.

  • PDF

Design and Fabrication of Six-Degree of Freedom Piezoresistive Turbulent Water Flow Sensor

  • Dao, Dzung Viet;Toriyama, Toshiyuki;Wells, John;Sugiyama, Susumu
    • 센서학회지
    • /
    • 제11권4호
    • /
    • pp.191-199
    • /
    • 2002
  • This paper presents the design concept, theoretical investigation, and fabrication of a six-degree of freedom (6-DOF) turbulent flow micro sensor utilizing the piezoresistive effect in silicon. Unlike other flow sensors, which typically measure just one component of wall shear stress, the proposed sensor can independently detect six components of force and moment on a test particle in a turbulent flow. By combining conventional and four-terminal piezoresistors in Si (111), and arranging them suitably on the sensing area, the total number of piezoresistors used in this sensing chip is only eighteen, much fewer than the forty eight piezoresistors of the prior art piezoresistive 6-DOF force sensor.

Necessary and Sufficient Conditions for the Existence of Decoupling Controllers in the Generalized Plant Model

  • Park, Ki-Heon;Choi, Goon-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.706-712
    • /
    • 2011
  • Necessary and sufficient conditions for the existence of diagonal, block-diagonal, and triangular decoupling controllers in linear multivariable systems for the most general setting are presented. The plant model in this study is sufficiently general to accommodate non-square plant and non-unity feedback cases with one-degree-of-freedom (1DOF) or two-degree-of-freedom (2DOF) controller configuration. The existence condition is described in terms of rank conditions on the coefficient matrices in partial fraction expansions.