• Title/Summary/Keyword: 690MPa

Search Result 20, Processing Time 0.022 seconds

Effects of Heat Inputs on the Mechanical Properties of FCA Weldment of YP 690MPa Grade Steels (항복강도 690MPa급 전자세용 FCA 용접와이어 개발에 있어 용접 입열의 영향 평가)

  • Jo, Young-Ju;Seo, Dae-Gon;Shin, Yong-Taek
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.11-15
    • /
    • 2016
  • YP 690MPa grade steels are used as the main structural steel for offshore structure such as Jack-up Rig and WTIV(Wind Turbine Installation Vessel). Most of welding consumables applied to YP 690MPa grade steels are basic type flux cored wires that shows the poor weldability and not suitable for all position welding. For this reason, welding consumables with rutile type flux system is required. Rutile type flux cored wires show excellent weldability and apply to all position welding. This paper presents the mechanical properties of weld metal with rutile type flux cored wire developed and finally assessed the possibility for application.

Gd effect on microstructure and properties of the Modified-690 alloy for function structure integrated thermal neutron shielding

  • Cheng Zhang;Jie Pan;Zixie Wang;Zhaoyu Wu;Qiliang Mei;Qianxue Ding;Jing Gao;Xueshan Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1541-1558
    • /
    • 2023
  • The new Modified-690Gd alloy, namely as Ni-30Cr-(10-x) Fe-xGd (x = 0.5, 1.0, 1.5,2.0, 3.0 wt%) for function structure integrated thermal neutron shielding has been prepared and characterized. The Modified-690Gd alloy was mainly composed of γ austenite matrix and (Ni, Cr, Fe)5Gd precipitated along grain boundaries. The new Modified-690Gd alloy had great mechanical properties, which had the tensile strength exceeding 620 MPa and the elongation being above 50%. Meanwhile, this alloy had excellent weldability and good corrosion resistance in boric acid. The new Modified-690Gd alloy is expected to be a kind of high efficiency thermal neutron shielding materials.

Stress Corrosion Cracking of Alloy 600 and Alloy 690 in Caustic Solution

  • Kim, Hong Pyo;Lim, Yun Soo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.82-87
    • /
    • 2003
  • Stress corrosion cracking of Alloy 600 and Alloy 690 has been studied with a C-ring specimen in 1%, 10% and 40% NaOH at $315^{\circ}C$. SCC test was performed at 200 mV above corrosion potential. Initial stress on the apex of C-ring specimen was varied from 300 MPa to 565 MPa. Materials were heat treated at various temperatures. SCC resistance of Ni-$_\chi$Cr-10Fe alloy increased as the Cr content of the alloy increased if the density of an intergranular carbide were comparable. SCC resistance of Alloy 600 increased in caustic solution as the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary increased. Low temperature mill annealed Alloy 600 with small grain size and without intergranular carbide was most susceptible to SCC. TT Alloy 690 was most resistant to SCC due to the high value of the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary. Dependency of SCC rate on stress and NaOH concentration was obtained.

Welding of Inconel Tube with Pulsed Nd:YAG Laser (펄스형 Nd:YAG 레이저 빔에 의한 Inconel Tube의 용접)

  • Kim, J.D.;Chang, W.;Chung, J.M.;Kim, C.J.
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.82-87
    • /
    • 1999
  • The basic remote sleeve repair-welding technology by the pulsed Nd:YAG laser for increasing the lifetime of the steam generator tube in a nuclear power plant has been developed. The relationship between the connection width and welding parameters have been investigated for the fundamental research to apply the sleeve-repair-welding technique to the nuclear industry. The Inconel 600 tube and Inconel 690 sleeve used for high temperature and high pressure service were welded as round lap welding by Nd:YAG laser. It was observed that the tensile shear strength, 340MPa of the welded specimen is equivalent to about 60% of that of the base metal (Inconel 600), 550MPa. The difference between the hardness of the base metal and that of the laser welds was about 10%. Ductile fracture was partly occurred in the weld but the cracking has not been observed. In spite of absence of the crack, the strength of welds was not sufficient in terms of the tensile shear strength.

  • PDF

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Alloy 690 제1열 시제전열관의 U 굽힘가공에서 치수평가 및 표면잔류응력

  • 김우곤;이창규;장진성;국일현;이동희;주영한
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.110-117
    • /
    • 1997
  • Alloy 690 제1열 시제 전열관을 U 굽힘 가공할 시 전열관에 도입된 표면 잔류응력 및 굽힘 단면에서 치수변화 (벽두께, 진원도)를 위치별로 측정하여 평가하였다. 외측호(extrados)의 표면 잔류응력은 $\psi$=0$^{\circ}$에서 축 방향 응력이 -319 MPa (압축)로 가장 높았으며, 내측호(intrados)는 $\psi$=0$^{\circ}$, 160$^{\circ}$ 위치인 천이영역 부관에서 응력 변화가 크게 되는 경향을 보였다 측면(flank)은 인장 잔류응력으로 $\psi$=90$^{\circ}$(apex)에서 최대 190 MPa 로 축방향 응력으로 나타났다. 잔류응력치는 벽두께 보다는 진원도 변화와 일치되어 나타났으며, 시제 전열관의 벽두께 및 진원도는 ASTM의 치수 허용치 내에 포함되는 것으로 평가되었다. 잔류응력 측정은 스트레인 게이지를 이용한 구멍뚫기 방법 (Hole-Drilling Method)을 사용하였다.

  • PDF

Dynamic Characteristics of Space Framed Structures by Using Nonlinear Transient Analysis (비선형 과도해석을 이용한 스페이스 프레임 구조물의 동적특성)

  • Son, Jin Hee;Kim, Joo-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.395-402
    • /
    • 2016
  • Space frame structures considering the components such as forms, layers, grids, etc. are possible to form a large space without interior columns. Here, steels having the yield strengths of 210 MPa to 450 MPa are generally used. The high strength steel (i.e., yield strength of 690 MPa) having suitable weldability, aseismicity and economics have been recently developed. In this paper, the high strength steel is applied to the space frame structures in order to analytically find out their transient responses considering the material and geometric nonlinearities. For various circular dome types of space frame structures, the modal analysis and nonlinear transient analysis are carried out using nonlinear three dimensional finite element analysis.

Seismic performance of eccentrically braced frames with high strength steel combination

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1517-1539
    • /
    • 2015
  • Eccentrically braced frames (EBFs) often use conventional steel with medium yield strength. This system requires structural members with large cross-sections for well seismic behavior, which leads to increased material costs. In eccentrically braced frames with high strength steel combination (HSS-EBFs), links use Q345 steel (specified nominal yield strength 345 MPa), braces use Q345 steel or high strength steel while other structural members use high strength steel (e.g., steel Q460 with the nominal yield strength of 460 MPa or steel Q690 with the nominal yield strength of 690 MPa). For this approach can result in reduced steel consumption and increased economic efficiency. Several finite element models of both HSS-EBFs and EBFs are established in this paper. Nonlinear hysteretic analyses and nonlinear time history analyses are conducted to compare seismic performance and economy of HSS-EBFs versus EBFs. Results indicate that the seismic performance of HSS-EBFs is slightly poorer than that of EBFs under the same design conditions, and HSS-EBFs satisfy seismic design codes and reduce material costs.

Behavior of Hybrid Double Skin Concrete Filled Circular Steel Tube Columns

  • Kim, Jin-Kook;Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.191-204
    • /
    • 2013
  • A hybrid double skin concrete filled (HDSCF) circular steel tube column is proposed in this study. The yield strength of the outer steel tube is larger than 690MPa and the inner tube has less strength. In order to achieve efficiency with the high strength outer tube, a feasibility study on reducing the thickness of the tube below the specified design codes for CFTs was conducted based on an experimental approach. The experiment also took variables such as thickness of the inner tube, hollow ratio, and strength of concrete into consideration to investigate the behavior of the HDSCF column. In order to estimate the applicability of design equations for CFTs to the HDSCF column, test results from CFT and HDSCF columns with design codes were compared. It was found that the axial compressive performance of the proposed HDSCF column is equivalent to that of the conventional CFT member irrespective of design variables. Furthermore, the design equation for a circular CFT given by EC4 is applicable to estimate the ultimate strength of the HDSCF circular steel tube column.

Torsion Pendulum for Monitoring Curing Behavior of an Epoxy Resin under Hydrostatic Pressure

  • Lee, Jong Keun;Pae, K.D.
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.395-402
    • /
    • 1993
  • A newly designed torsion pendulum operating at high pressures and various temperatures has been constructed. The High Pressure Torsion Pendulum(HPTP) is capable of containing gaseous pressure to 690MPa(100, 000psi) and operating at temperatures from-$100^{\circ}C$ to $300^{\circ}C$. A glass fiber braid is installed between two sample holders to accommodateliquid samples. The HPTP was fully automated and computerized using an IBM-AT personal computer to control initiation of oscillation, collect digitized data, and calculate the shear and loss moduli from damped curves, The curing process of an epoxyamine(DGEBA-DDS) system under various pressures up to 124 MPa(18, 000 psi) at $150^{\circ}C$has been successfully carried out and some results are presented.

  • PDF