• Title/Summary/Keyword: 5G network

Search Result 717, Processing Time 0.028 seconds

Ultra-low-latency services in 5G systems: A perspective from 3GPP standards

  • Jun, Sunmi;Kang, Yoohwa;Kim, Jaeho;Kim, Changki
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.721-733
    • /
    • 2020
  • Recently, there is an increasing demand for ultra-low-latency (ULL) services such as factory automation, autonomous driving, and telesurgery that must meet an end-to-end latency of less than 10 ms. Fifth-generation (5G) New Radio guarantees 0.5 ms one-way latency, so the feasibility of ULL services is higher than in previous mobile communications. However, this feasibility ensures performance at the radio access network level and requires an innovative 5G network architecture for end-to-end ULL across the entire 5G system. Hence, we survey in detailed two the 3rd Generation Partnership Party (3GPP) standardization activities to ensure low latency at network level. 3GPP standardizes mobile edge computing (MEC), a low-latency solution at the edge network, in Release 15/16 and is standardizing time-sensitive communication in Release 16/17 for interworking 5G systems and IEEE 802.1 time-sensitive networking (TSN), a next-generation industry technology for ensuring low/deterministic latency. We developed a 5G system based on 3GPP Release 15 to support MEC with a potential sub-10 ms end-to-end latency in the edge network. In the near future, to provide ULL services in the external network of a 5G system, we suggest a 5G-IEEE TSN interworking system based on 3GPP Release 16/17 that meets an end-to-end latency of 2 ms.

Access Control for D2D Systems in 5G Wireless Networks

  • Kim, Seog-Gyu;Kim, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.103-110
    • /
    • 2021
  • In this paper, we compare two access control mechanisms for D2D(Device-to-Device) systems in 5G wireless networks and propose an effective access control for 5G D2D networks. Currently, there is no specified access control for 5G D2D networks but there can be two access control approaches for 5G D2D networks. One is the UE-to-Network Relay based access control and the other is the Remote UE(User Equipment) based access control. The former is a UE-to-Network Relay carries out the access control check for 5G D2D networks but the latter is a Remote UE performs the access control check for 5G D2D networks. Through simulation and evaluation, we finally propose the Remote UE based access control for D2D systems in 5G wireless networks. The proposed approach minimizes signalling overhead between the UE-to-Network Relay and the Remote UE and more efficiently performs the access control check, when the access control functionalities are different from the UE-to-Network Relay in 5G D2D networks.

Service Function Chaining Architecture for Distributed 5G Mobile Core Networks (분산 모바일 코어기반 5G 네트워크에서의 Service Function Chaining 적용구조)

  • Sun, Kyoungjae;Kim, Younghan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1914-1924
    • /
    • 2016
  • In this paper, considering virtualized Evolved Packet Core(vEPC) network for 5G mobile network, we propose architecture for supporting Service Function Chaining(SFC) in 5G mobile network. Using SFC in 5G network, dynamic path configuration and providing network services based on subscriber and traffic information. SFC technology provides logical ordered set of network functions and delivers packet through providing logical path over the physical network. Based on the perspective of 5G core network in distributed manner, we design hierarchical SFC architecture to manage SFC for global path including vEPC and SGi-LAN network, and internal path between virtualized network functions in each cloud. In this paper, we define architecture and call flow for establishing data path using SFC. Finally, we design testbed architecture for real implementation based on open source software.

Trends of 5G Network Automation and Intelligence Technologies Standardization (5G 네트워크 자동화 및 지능 기술 표준화 동향)

  • Shin, M.K.;Lee, S.H.;Yi, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.92-100
    • /
    • 2019
  • Vast amounts of different service-specific requirements and vertical network slicing in a 5G network increase the complexity, cost of the network management and resource operations for carriers. To solve this problem, 3GPP is working on the standardization of NWDAF to support the automation of the 5G network by utilizing artificial intelligence technologies based on Big Data to improve the efficiency of network management and resource operation. In addition, the ETSI ZSM Industry Specification Group is developing technical standards for the automation of end-to-end network management and service delivery. This document provides an overall survey of the latest standardization issues of the NWDAF in 3GPP and ETSI ZSM for 5G network automation and intelligence.

Analysis of E2E Latency for Data Setup in 5G Network (5G 망에서 Data Call Setup E2E Latency 분석)

  • Lee, Hong-Woo;Lee, Seok-Pil
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.113-119
    • /
    • 2019
  • The key features of 5G mobile communications recently commercialized can be represented by High Data Rate, Connection Density and Low Latency, of which the features most distinct from the existing 4G will be low Latency, which will be the foundation for various new service offerings. AR and self-driving technologies are being considered as services that utilize these features, and 5G Network Latency is also being discussed in related standards. However, it is true that the discussion of E2E Latency from a service perspective is much lacking. The final goal to achieve low Latency at 5G is to achieve 1ms of air interface based on RTD, which can be done through Ultra-reliable Low Latency Communications (URLLC) through Rel-16 in early 20 years, and further network parity through Mobile Edge Computing (MEC) is also being studied. In addition to 5G network-related factors, the overall 5G E2E Latency also includes link/equipment Latency on the path between the 5G network and the IDC server for service delivery, and the Processing Latency for service processing within the mobile app and server. Meanwhile, it is also necessary to study detailed service requirements by separating Latency for initial setup of service and Latency for continuous service. In this paper, the following three factors were reviewed for initial setup of service. First, the experiment and analysis presented the impact on Latency on the Latency in the case of 1 Data Lake Setup, 2 CRDX On/Off for efficient power, and finally 3H/O on Latency. Through this, we expect Low Latency to contribute to the service requirements and planning associated with Latency in the initial setup of the required services.

The Design and Experiment of AI Device Communication System Equipped with 5G (5G를 탑재한 AI 디바이스 통신 시스템의 설계 및 실험)

  • Han Seongil;Lee Daesik;Han Jihwan;Moon Hhyunjin;Lim Changmin;Lee Sangku
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.2
    • /
    • pp.69-78
    • /
    • 2023
  • In this paper, IO+5G dedicated hardware is developed and an AI device communication system equipped with a 5G is designed and tested. The AI device communication system equipped with a 5G receives the collected real-time images and the information collected from the IoT sensor in real time is to analyze the information and generates the risk detection events in the AI processing board. The event generated in the AI processing board creates a 5G channel in the dedicated hardware equipped with IO+5G. The created 5G channel delivers event video to the control video server. The 5G based dongle network enables faster data collection and more precise data measurement compared to wireless LAN and 5G routers. As a result of the experiment in this paper, the average test result of the 5G dongle network is about 51% faster than the Wi-Fi average test result in downlink and about 40% faster in uplink. In addition, when comparing the test result with terms of the 5G rounter to be set to 80% upload and 20% download, the average test result is that the 5G dongle network is about 11.27% faster when downloading and about 17.93% faster when uploading. when comparing the test result with terms of the the router to be set to 60% upload and 40% download, the 5G dongle network is about 11.19% faster when downlinking and about 13.61% faster when uplinking. Therefore, in this paper it describes that the developed 5G dongle network can improve the results by collecting data and analyzing it faster than wireless LAN and 5G routers.

A Study on Improving Data Poisoning Attack Detection against Network Data Analytics Function in 5G Mobile Edge Computing (5G 모바일 에지 컴퓨팅에서 빅데이터 분석 기능에 대한 데이터 오염 공격 탐지 성능 향상을 위한 연구)

  • Ji-won Ock;Hyeon No;Yeon-sup Lim;Seong-min Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.549-559
    • /
    • 2023
  • As mobile edge computing (MEC) is gaining attention as a core technology of 5G networks, edge AI technology of 5G network environment based on mobile user data is recently being used in various fields. However, as in traditional AI security, there is a possibility of adversarial interference of standard 5G network functions within the core network responsible for edge AI core functions. In addition, research on data poisoning attacks that can occur in the MEC environment of standalone mode defined in 5G standards by 3GPP is currently insufficient compared to existing LTE networks. In this study, we explore the threat model for the MEC environment using NWDAF, a network function that is responsible for the core function of edge AI in 5G, and propose a feature selection method to improve the performance of detecting data poisoning attacks for Leaf NWDAF as some proof of concept. Through the proposed methodology, we achieved a maximum detection rate of 94.9% for Slowloris attack-based data poisoning attacks in NWDAF.

A Cooperative Security Gateway cooperating with 5G+ network for next generation mBcN (차세대 mBcN을 위한 5G+ 연동보안게이트웨이)

  • Nam, Gu-Min;Kim, Hyoungshick;Lee, Hyun-Jin;Cho, Hark-Su
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.129-140
    • /
    • 2021
  • The next generation mBcN should be built to cooperate with the wireless network to support hyper-speed and hyper-connectivity. In this paper, we propose a network architecture for the cooperation mBcN and 5G commercial network and architecture of the cooperative security gateway required for the cooperation. The proposed cooperative security gateway is between gNB and UPF to support LBO, SFC, and security. Our analysis shows that the proposed architecture has several advantages. First of all, user equipment connected with the mBcN can be easily connected through the 5G commercial radio network to the mBcN. Second, the military application traffic can be transmitted to mBcN without going through the 5G core network, reducing the end-to-end transmission delay without causing the traffic load on the 5G core network. In addition, the security level of the military application can effectively be maintained because the user equipment can be connected to the cooperative security gateway, and the traffic generated by the user equipment is transmitted to the mBcN without going through the 5G core network. Finally, we demonstrate that LBO, SFC, and security modules are essential functions of the proposed gateway in the 5G test-bed environment.

Agile Management and Interoperability Testing of SDN/NFV-Enriched 5G Core Networks

  • Choi, Taesang;Kim, TaeYeon;Tavernier, Wouter;Korvala, Aki;Pajunpaa, Jussi
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.72-88
    • /
    • 2018
  • In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20 Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks.

Security Threats and Potential Security Requirements in 5G Non-Public Networks for Industrial Applications

  • Park, Tae-Keun;Park, Jong-Geun;Kim, Keewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.105-114
    • /
    • 2020
  • In this paper, we address security issues in 5G non-public networks for industrial applications. In contrast to public networks that offer mobile network services to the general public, 5G non-public networks provide 5G network services to a clearly defined user organization or groups of organizations, and they are deployed on the organization's defined premises, such as a campus or a factory. The main goal of this paper is to derive security threats and potential security requirements in the case that 5G non-public networks are built for discrete and process industries according to the four deployment models of 5G-ACIA (5G Alliance for Connected Industries and Automation). In order to clarify the scope of this paper, we express the security toolbox to be applied to 5G non-public networks in the form of the defense in depth concept. Security issues related to general 5G mobile communication services are not within the scope of this paper. We then derive the security issues to consider when applying the 5G-ACIA deployment models to the industrial domain. The security issues are divided into three categories, and they are described in the order of overview, security threats, and potential security requirements.