• Title/Summary/Keyword: 500hPa등압면

Search Result 3, Processing Time 0.017 seconds

Synoptic Climatological Characteristics of Distribution of Precipitation in Korea in Early Autumn (한국의 초가을 강수분포의 종관기후학적 특성)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.1
    • /
    • pp.151-162
    • /
    • 1999
  • This study is a comparative analysis of sea level and 500hPa surfaces between dry year and wet year, which are selected by variability of precipitation and standardized anomalies in Korea in early autumn. While the amount of precipitation of early autumn decreases, the variability of precipitation increases rapidly reflecting the strength and weakness of Kaul Changma front and the occurrences of the typhoonic precipitation. The regional distribution of the variability of precipitation shows west-high, east-low pattern in which the east coast and the southeastern coast shows low, but high in the southwestern coast. In the anomalies distribution of sea-level and 500hPa surfaces, during dry year, the northern part of Siberia and the core area of North Pacific high shows negative anomalies, on the contrary, there were positive anomalies in wet year at the same areas. In addition, at the 500hPa level, while the Korean peninsula was located at the west of deep trough with low zonal index in dry year, the peninsula was influenced by weak trough with high zonal index showing strong zonal flow in wet year. During dry year the height of 500hPa surface is low at the north of $40^{\circ}N$, but high in wet year. In consequences, this study identified that the occurrences of dry year and wet year were influenced by the seasonal variations of the strength and the weakness of North Pacific high and Siberian high.

  • PDF

Synoptic Climatological Characteristics of Spring Droughts in Korea (한국의 춘계한발의 종관기후학적 특성)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.43-56
    • /
    • 1998
  • The purpose of this study is to identify distributional characteristics of climatic elements and to analyze synoptic characteristics on the pressure fields for spring droughts in Korea. In the distributions of minimum temperature during the spring droughts, positive anomalies and negative anomalies are mixed up, but in March the negative anomaly areas are widely distributed in Korea. It implies that the droughts of March have more frequent occurrences of the west-high, east-low pressure patterns. In the maximum air temperatures, the positive anomalies appear in Korea. It indicates that the spring droughts have rain days, cloud amount and humidities less than normal. As a result, the amount of evaporation is increased in Korea. In the pressure anomaly of surface pressure fields, the positive anomalies appear in the west, negative anomalies in the east in March, but in May the positive anomalies appeared zonally around the Korean peninsula. It indicates that March droughts have more frequent occurrences of the west-high. east-low patterns, but in May the Korean Peninsula has more frequent recurrences of the migratory anticyclone patterns. The height anomaly patterns of 500hPa pressure surface in spring droughts are similarly shown to those of surface fields. In March droughts, the positive height anomalies appear in the west, the negative height anomalies in the east, but in April the negative height anomaly areas are extended to the west part. In May the positive anomalies appear zonally around the Korean Peninsula, and strong positive height anomalies appear around the Kamchatka Peninsula and the sea of Okhotsk. These are the result of circulations that inhibit the eastward movement of westerlies and that has persistent anticyclone circulation patterns around the Korean Peninsula. As a result, the zonal indices of westerlies during March and April droughts are lower than normal, but higher in May. These data indicate that early spring droughts are associated with weak zonal flow, but the late spring droughts are obviously related with strong zonal flow. In addition, during early spring droughts the abnormally deep trough over the west coast of the North Pacific Ocean that accompanied the anticyclone was associated with frequent advection of air from the dry regions in the Central Asia into the Korean Peninsula. The atmospheric circulation patterns at the height of the 500hPa pressure surface in May was quite different from March and April circulation patterns. Instead of the abnormal ridge in the west and trough in the east, the circulation pattern in May was characterized by a much stronger than normal anticyclone over the Korean Peninsula. Also, the zonal indices of westerlies in May are higher than normal. The occurrences of drought in early spring, therefore, have mechanism different from those of late spring.

  • PDF

Feasibility of the Lapse Rate Prediction at an Hourly Time Interval (기온감률의 일중 경시변화 예측 가능성)

  • Kim, Soo-ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 2016
  • Temperature lapse rate within the planetary boundary layer shows a diurnal cycle with a substantial variation. The widely-used lapse rate value for the standard atmosphere may result in unaffordable errors if used in interpolating hourly temperature in complex terrain. We propose a simple method for estimating hourly lapse rate and evaluate whether this scheme is better than the conventional method using the standard lapse rate. A standard curve for lapse rate based on the diurnal course of temperature was drawn using upper air temperature for 1000hPa and 925hPa standard pressure levels. It was modulated by the hourly sky condition (amount of clouds). In order to test the reliability of this method, hourly lapse rates for the 500-600m layer over Daegwallyeong site were estimated by this method and compared with the measured values by an ultrasonic temperature profiler. Results showed the mean error $-0.0001^{\circ}C/m$ and the root mean square error $0.0024^{\circ}C/m$ for this vertical profile experiment. An additional experiment was carried out to test if this method is applicable for the mountain slope lapse rate. Hourly lapse rates for the 313-401m slope range in a complex watershed ('Hadong Watermark 2') were estimated by this method and compared with the observations. We found this method useful in describing diurnal cycle and variation of the mountain slope lapse rate over a complex terrain despite larger error compared with the vertical profile experiment.