• Title/Summary/Keyword: 5.9GHz

Search Result 788, Processing Time 0.028 seconds

THE STUDY OF SCINTILLATION ON C-BAND LOW ELEVATION ANGLE AT SRI-RACHA SATELLITE EARTH STATION

  • Theerapatpaiboon, P.;Sukkaewthanom, S.;Leelaruji, N.;Hemmakorn, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.20-23
    • /
    • 2004
  • Tropospheric and ionospheric scintillation may impact on C-band satellite communication systems, particularly at lowmargin systems and low elevation angles. This paper presents the characteristics of C-Band scintillation at low elevation angle received and recorded the satellite signal from INTELSAT above the Pacific Ocean Region (POR) from January 2002 to December 2002 in the period of solar maximum. We received 3.9525 GHz beacon signal at Sri-Racha satellite earth station by the 32 meters in diameter antenna with 8 degrees of elevation. The analysis was found that the values of amplitude fluctuation is mostly about 0.5-0.6 dB peak to peak and $S_4$ = 0.03-0.04. The maximum amplitude fluctuation is about 9 dB peak to peak occurring in April. The occurrence numbers of scintillation is most frequently in April and minimum in November. The occurrence numbers of tropospheric scintillation are most frequently in April and October, and minimum in November. It relates to temperature and water vapor pressure variation in $N_{wet} $. The occurrence numbers of ionospheric scintillation are most frequently in April and September, and minimum in November. It varies corresponding to both equinoctial periods (vernal and autumnal equinox in March and September) and solstice periods (June and December) respectively.

  • PDF

Effect of Plasma Area on Frequency of Monostatic Radar Cross Section Reduction

  • Ha, Jungje;Shin, Woongjae;Lee, Joo Hwan;Kim, Yuna;Kim, Doosoo;Lee, Yongshik;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.153-158
    • /
    • 2017
  • This work reports on the effect of plasma area on the frequency characteristics of the monostatic radar cross section (RCS) of a square metallic plate. A dielectric barrier discharge (DBD) plasma actuator consisting of 10 rings is proposed. The actuator is fabricated in three different configurations such that only three inner rings, seven inner rings, and all rings can be biased. By applying an 18-kV bias at 1 kHz, the three types of DBD actuators generate plasma with a total area of 16.96, 36.74, and $53.69cm^2$, respectively, in a ring or circular form. The experimental results reveal that when the DBD actuator is placed in front of a $20mm{\times}20cm$ conducting plate, the monostatic RCS is reduced by as much as 18.5 dB in the range of 9.41-11.65 GHz. Furthermore, by generating the plasma and changing the area, the frequency of maximum reduction in the monostatic RCS of the plate can be controlled. The frequency is reduced by nearly 20% in the X band when all rings are biased. Finally, an electromagnetic model of the plasma is obtained by comparing the experimental and full-wave simulated results.

Sintering and Microwave Dielectric Properties of Zn2-2xSi1+xO4 Ceramics (Zn2-2xSi1+xO4 세라믹스의 소결 및 마이크로파 유전 특성)

  • Yoon, Sang-Ok;Kim, Yun-Han;Kim, So-Jung;Jo, So-Ra;Kim, Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.428-432
    • /
    • 2015
  • Sintering and microwave dielectric properties of $Zn_{2-2x}Si_{1+x}O_4$ (x=0~0.10) ceramics were investigated. The secondary phase of ZnO was observed in the specimen for x=0 whereas $SiO_2$ was detected in that for x=0.05. The composition of $Zn_2SiO_4$ might be close to x=0.02, i.e., $Zn_{1.96}Si_{1.02}O_4$; the ratio of Zn/Si is 1.922. The insufficient grain growth was observed in the specimen of x=0. For the specimens of $x{\geq}0.05$, the grain growth sufficiently occurred through the liquid phase sintering. The value of quality factor of all specimens was dependent on the x value, i.e., the ratio of Zn/Si, whereas that of dielectric constant was independent. Relative density, dielectric constant, and quality factor ($Q{\times}f$) of the specimen for x=0.05, i.e., $Zn_{1.9}Si_{1.05}O_4$, sintered at $1,400^{\circ}C$ were 96.5%, 6.43, and 115,166 GHz, respectively.

THERMAL AND NON-THERMAL RADIO CONTINUUM SOURCES IN THE W51 COMPLEX

  • MOON DAE-SIK;KOO BON-CHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.81-102
    • /
    • 1994
  • We have decomposed the 11-cm radio continuum emission of the W51 complex into thermal and non-thermal components. The distribution of the thermal emission has been determined by analyzing HI, CO, and IRAS $60-{\mu}m$ data. We have found a good correlation between the 11-cm thermal continuum and the 60- 11m emissions, which is used to obtain the thermal and non-thermal 11-cm continuum maps of the W51 complex. Most of the thermal continuum is emanating from the compact H II regions and their low-density ionized envelopes in W51A and W51B. All the H II regions, except G49.1-0.4 in W51B, have associated molecular clumps. The thermal radio continuum fluxes of the compact H II regions are proportional to the CO fluxes of molecular clumps. This is consistent with the previous results that the total mass of stars in an H II region is proportional to the mass of the associated molecular clump. According to our result, there are three non-thermal continuum sources in W51: G49.4-0.4 in W51A, a weak source close to G49.2-0.3 in W51B, and the shell source W51C. The non-thermal flux of G49.5-0.4 at 11-cm is $\~28 Jy$, which is $\~25\%$ of its total 11-cm flux. The radio continuum spectrum between 0.15 and 300 GHz also suggests an excess emission over thermal free-free emission. We show that the excess emission can be described as a non-thermal emission with a spectral index ${\alpha}{\simeq}-1.0 (S_v{\propto}V^a)$ attenuated by thermal free-free absorptions at low-frequencies. The non-thermal source close to G49.2-0.3 is weak $(\~9 Jy)$. The nature of the source is not known and the reality of the non-thermal emission needs to be confirmed. The non~thermal shell source W51C has a 11-cm flux of $\~130Jy$ and a spectral index ${\alpha}{\simeq}-0.26$.

  • PDF

Microwave Dielectric Properties of the $BaO-(Nd,Bi)_2 O_3-TiO_2$$_2$ Ceramic for Mobile Communication Component (이동 통신 부품에 이용되는 $BaO-(Nd,Bi)_2 O_3-TiO_2$계 마이크로파 유전체의 유전 특성)

  • 윤중락;이헌용;김경용;이석원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.947-953
    • /
    • 1998
  • The microwave dielectric properties of X BaO-0.15($Nd_{0.87}Bi_{0.13})_2O_3-(0.85-X)TiO_2 (X=0.14~0.17) and 0.16BaO-0.15(Bi_xNd_{1-x})_2O_3-0.69TiO_2$ (X=0.12~0.15) ceramics sintered at 1320~$1380^{\circ}C$ were investigated. The microwave dielectric properties of X BaO-0.15(Nd_{0.87}Bi_{0.13})_2O_3-(0.85-X)TiO_2$ (X=0.14~0.17) can be controlled effectively by adjusting X content : with increasing X from 0.14 to 0.17 both dielectric constant and temperature coefficient of resonant frequency decreased from 94.6 to 86 and from 22 ppm/^${\circ}C to -7 ppm/^{\circ}C$, respectively, while quality factor increased from 1300 to 1920 (at 4GHz). The microwave dielectric properties of 0.16BaO-0.15(Bi_x/Nd_{1-x2}O_3 -0.69TiO_2$ (X=0.12~0.15) can be controlled effectively by adjusting X content : with increasing X from 0.12 to 0.15 both quality factor and temperature coefficient of resonant frequency decreased from 1920 to 1430 and from 9 ppm/^${\circ}C to -10 ppm/^{\circ}C$, respectively, while dielectric constant increased from 87.5 to 92.6.

  • PDF

Attenuation Effects of Plasma on Ka-Band Wave Propagation in Various Gas and Pressure Environments

  • Lee, Joo Hwan;Kim, Joonsuk;Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Lee, Yongshik;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.63-69
    • /
    • 2018
  • This work demonstrates attenuation effects of plasma on waves propagating in the 26.5-40 GHz range. The effect is investigated via experiments measuring the transmission between two Ka-band horn antennas set 30 cm apart. A dielectric-barrier-discharge (DBD) plasma generator with a size of $200mm{\times}100mm{\times}70mm$ and consisting of 20 layers of electrodes is placed between the two antennas. The DBD generator is placed in a $400mm{\times}300mm{\times}400mm$ acrylic chamber so that the experiments can be performed for plasma generated under various conditions of gas and pressure, for instance, in air, Ar, and He environments at 0.001, 0.05, and 1 atm of pressure. Attenuation is calculated by the difference in the transmission level, with and without plasma, which is generated with a bias voltage of 20 kV in the 0.1-1.4 kHz range. Results show that the attenuation varies from 0.05 dB/m to 9.0 dB/m depending on the environment. Noble gas environments show higher levels of attenuation than air, and He is lossier than Ar. In all gas environments, attenuation increases as pressure increases. Finally, electromagnetic models of plasmas generated in various conditions are provided.

Room-temperature Preparation of Al2O3 Thick Films by Aerosol Deposition Method for Integrated RE Modules

  • Tsurumi, Takaaki;Nam, Song-Min;Mori, Naoko;Kakemoto, Hirofumi;Wada, Satoshi;Akedo, Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.715-719
    • /
    • 2003
  • The Aerosol Deposition (AD) process will be proposed as a new fabrication technology for the integrated RF modules. $\alpha$-A1$_2$O$_3$ thick films were successfully grown on glass and Al substrates at room temperature by the AD process. Relative dielectric permittivity and loss tangent of the $Al_2$O$_3$ thick films on Al showed 9.5 and 0.005, respectively. To form microstrip lines on aerosol-deposited A1903 thick films, copper electroplating and lithography processes were employed, and the square-type cross section with sharp edges could be obtained. Low-pass LC filters with 10 GHz cutoff frequency were simulated by an electromagnetic analysis, exhibiting the validity of the AD process as a fabrication technology f3r integrated RF modules.

Hardware Design for Timing Synchronization of OFDM-Based WAVE Systems (OFDM 기반 WAVE 시스템의 시간동기 하드웨어 설계)

  • Huynh, Tronganh;Kim, Jin-Sang;Cho, Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.473-478
    • /
    • 2008
  • WAVE is a short-to-medium range communication standard that supports both public safety and private operations in roadside-to-vehicle and vehicle-to-vehicle communication environments. The core technology of physical layer in WAVE is orthogonal frequency division multiplexing (OFDM), which is sensitive to timing synchronization error. Besides, minimizing the latency in communication link is an essential characteristic of WAVE system. In this paper, a robust, low-complexity and small-latency timing synchronization algorithm suitable for WAVE system and its efficient hardware architecture are proposed. The comparison between proposed algorithm and other algorithms in terms of computational complexity and latency has shown the advantage of the proposed algorithm. The proposed architecture does not require RAM (Random Access Memory) which can affect the pipe lining ability and high speed operation of the hardware implementation. Synchronization error rate (SER) evaluation using both Matlab and FPGA implementation shows that the proposed algorithm exhibits a good performance over the existing algorithms.

Fast Distributed Video Coding using Parallel LDPCA Encoding (병렬 LDPCA 채널코드 부호화 방법을 사용한 고속 분산비디오부호화)

  • Park, Jong-Bin;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.144-154
    • /
    • 2011
  • In this paper, we propose a parallel LDPCA encoding method for fast transform-domain Wyner-Ziv video encoding which is suitable in an ultra fast and low power video encoding. The conventional transform-domain Wyner-Ziv video encoding performs LDPCA channel coding of quantized transform coefficients in bitplane-serial fashion, which takes about 60% of total encoding time, and this computational complexity becomes severer as the bitrate increases. The proposed method binds several bitplanes into one packed message and carries out the LDPCA encoding in parallel. The proposed LDPCA encoding method improves the encoding speed by 8 ~ 55 times. In the experiment, the proposed Wyner-Ziv encoder can encode 700 ~ 2,300 QCIF size frames per second with GOP=64. The method can be applied to the pixel-domain Wyner-Ziv encoder using LDPCA, and has a wide scope of application.

Si-core/SiGe-shell channel nanowire FET for sub-10-nm logic technology in the THz regime

  • Yu, Eunseon;Son, Baegmo;Kam, Byungmin;Joh, Yong Sang;Park, Sangjoon;Lee, Won-Jun;Jung, Jongwan;Cho, Seongjae
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.829-837
    • /
    • 2019
  • The p-type nanowire field-effect transistor (FET) with a SiGe shell channel on a Si core is optimally designed and characterized using in-depth technology computer-aided design (TCAD) with quantum models for sub-10-nm advanced logic technology. SiGe is adopted as the material for the ultrathin shell channel owing to its two primary merits of high hole mobility and strong Si compatibility. The SiGe shell can effectively confine the hole because of the large valence-band offset (VBO) between the Si core and the SiGe channel arranged in the radial direction. The proposed device is optimized in terms of the Ge shell channel thickness, Ge fraction in the SiGe channel, and the channel length (Lg) by examining a set of primary DC and AC parameters. The cutoff frequency (fT) and maximum oscillation frequency (fmax) of the proposed device were determined to be 440.0 and 753.9 GHz when Lg is 5 nm, respectively, with an intrinsic delay time (τ) of 3.14 ps. The proposed SiGe-shell channel p-type nanowire FET has demonstrated a strong potential for low-power and high-speed applications in 10-nm-and-beyond complementary metal-oxide-semiconductor (CMOS) technology.