DOI QR코드

DOI QR Code

Sintering and Microwave Dielectric Properties of Zn2-2xSi1+xO4 Ceramics

Zn2-2xSi1+xO4 세라믹스의 소결 및 마이크로파 유전 특성

  • Yoon, Sang-Ok (Department of Materials Engineering, Graduate School, Gangneung-Wonju National University) ;
  • Kim, Yun-Han (Department of Materials Engineering, Graduate School, Gangneung-Wonju National University) ;
  • Kim, So-Jung (Department of Electrical and Electronic Engineering, Hanzhong University) ;
  • Jo, So-Ra (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Kim, Shin (Hasla Co., Ltd.)
  • 윤상옥 (강릉원주대학교 대학원 재료공학과) ;
  • 김윤한 (강릉원주대학교 대학원 재료공학과) ;
  • 김소정 (한중대학교 전기전자공학과) ;
  • 조소라 (강릉원주대학교 세라믹신소재공학과) ;
  • 김신 ((주)하슬라)
  • Received : 2015.05.29
  • Accepted : 2015.06.24
  • Published : 2015.07.01

Abstract

Sintering and microwave dielectric properties of $Zn_{2-2x}Si_{1+x}O_4$ (x=0~0.10) ceramics were investigated. The secondary phase of ZnO was observed in the specimen for x=0 whereas $SiO_2$ was detected in that for x=0.05. The composition of $Zn_2SiO_4$ might be close to x=0.02, i.e., $Zn_{1.96}Si_{1.02}O_4$; the ratio of Zn/Si is 1.922. The insufficient grain growth was observed in the specimen of x=0. For the specimens of $x{\geq}0.05$, the grain growth sufficiently occurred through the liquid phase sintering. The value of quality factor of all specimens was dependent on the x value, i.e., the ratio of Zn/Si, whereas that of dielectric constant was independent. Relative density, dielectric constant, and quality factor ($Q{\times}f$) of the specimen for x=0.05, i.e., $Zn_{1.9}Si_{1.05}O_4$, sintered at $1,400^{\circ}C$ were 96.5%, 6.43, and 115,166 GHz, respectively.

Keywords

References

  1. I. M. Reaney and D. Iddles, J. Am. Ceram. Soc., 89, 2063 (2006).
  2. H. Ohsato, J. Ceram. Soc. Jpn., 113, 703 (2005). [DOI: http://dx.doi.org/10.2109/jcersj.113.703]
  3. S. B. Narang and S. Bahel, J. Ceram. Process. Res., 11, 316 (2010).
  4. Y. Guo, H. Ohsato, and K. I. Kakimoto, J. Eur. Ceram. Soc., 26, 1827 (2006). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2005.09.008]
  5. M. Dong, Z. Yue, H. Zhuang, S. Meng, and L. Li, J. Am. Ceram. Soc., 91, 3981 (2008). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2008.02814.x]
  6. M. A. Eidem, B. R. Orton, and A. Whitaker, J. Mater. Sci., 22, 4139 (1987). [DOI: http://dx.doi.org/10.1007/BF01133370]
  7. N. Tanaka, T. Iseki, L. Ling, R. Shimpo, and O. Ogawa, Shigen-to-Sozai, 114, 567 (1998). [DOI: http://dx.doi.org/10.2473/shigentosozai.114.567]
  8. N. H. Nguyen, J. B. Lim, S. Nahm, J. H. Paik, and J. H. Kim, J. Am. Ceram. Soc., 90, 3127 (2007). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2007.01891.x]
  9. Phase Diagrams for Ceramists, Figure number 302, the ZnO-$SiO_2$ System, The American Ceramic Society, Inc. (1964).
  10. R. Hansson, B. Zhao, P. C. Hayes, and E. Jak, Metall. Mater. Trans. B, 36B, 187 (2005). [DOI: http://dx.doi.org/10.1007/s11663-005-0019-y]
  11. J. Xue, S. Wu, and J. Li, J. Am. Ceram. Soc., 96, 2481 (2013). [DOI: http://dx.doi.org/10.1111/jace.12331]
  12. J. L. Zou, Q. L. Zhang, H. Yang, and H. P. Sun, Jpn. J. Appl. Phys., 45, 4143 (2006). [DOI: http://dx.doi.org/10.1143/JJAP.45.4143]

Cited by

  1. MICROSTRUCTURE, PHASE EVOLUTION, AND MICROWAVE DIELECTRIC PROPERTIES OF Li₂O AND Ga₂O ₃ DOPED ZINC ORTHOSILICATE 2017, https://doi.org/10.13168/cs.2017.0018