Abstract
Sintering and microwave dielectric properties of $Zn_{2-2x}Si_{1+x}O_4$ (x=0~0.10) ceramics were investigated. The secondary phase of ZnO was observed in the specimen for x=0 whereas $SiO_2$ was detected in that for x=0.05. The composition of $Zn_2SiO_4$ might be close to x=0.02, i.e., $Zn_{1.96}Si_{1.02}O_4$; the ratio of Zn/Si is 1.922. The insufficient grain growth was observed in the specimen of x=0. For the specimens of $x{\geq}0.05$, the grain growth sufficiently occurred through the liquid phase sintering. The value of quality factor of all specimens was dependent on the x value, i.e., the ratio of Zn/Si, whereas that of dielectric constant was independent. Relative density, dielectric constant, and quality factor ($Q{\times}f$) of the specimen for x=0.05, i.e., $Zn_{1.9}Si_{1.05}O_4$, sintered at $1,400^{\circ}C$ were 96.5%, 6.43, and 115,166 GHz, respectively.