• Title/Summary/Keyword: 5.9GHz

Search Result 788, Processing Time 0.025 seconds

A 77 GHz 3-Stage Low Noise Amplifier with Cascode Structure Utilizing Positive Feedback Network using 0.13 μm CMOS Process

  • Lee, Choong-Hee;Choi, Woo-Yeol;Kim, Ji-Hoon;Kwon, Young-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • A 77 GHz 3-stage low noise amplifier (LNA) employing one common source and two cascode stages is developed using $0.13{\mu}m$ CMOS process. To compensate for the low gain which is caused by lossy silicon substrate and parasitic element of CMOS transistor, positive feedback technique using parasitic inductance of bypass capacitor is adopted to cascode stages. The developed LNA shows gain of 7.2 dB, Sl1 of -16.5 dB and S22 of -19.8 dB at 77 GHz. The return loss bandwidth of LNA is 71.6 to 80.9 GHz (12%). The die size is as small as $0.7mm\times0.8mm$ by using bias line as inter-stage matching networks. This LNA shows possibility of 77 GHz automotive RADAR system using $0.13{\mu}m$ CMOS process, which has advantage in cost compared to sub-100 nm CMOS process.

A New Compact Double Conversion Gate Mixer using a Half-LO Frequency

  • Lee, Jae-Ryong;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.56-58
    • /
    • 2002
  • In this paper, the double conversion gate mixer using a half-LO frequency is described at 25 GHz band. The proposed mixer uses two HEMTs excited by a single LO signal of half-LO frequency in order to generate the second IF signal. That is, the LO signal having the half-LO frequency is only fed into the gate of the first HEMT mixer as a normal gate mixer. The LO signal through the first mixer is find into the second mixer The proposed miler requires not only half of the normal LO frequency, but also lower LO power than the conventional subharmonically pumped milers. Over the bandwidth of 500 MHz at 24.5 GHz, the conversion gain is 2.5 dB, the noise figure is 9 dB, and the isolation between RF and LO port is 32 dB when the LO poller is 0 dBm at 12.65 GHz.

A 7.6 mW 2 Gb/s Proximity Transmitter for Smartphone-Mirrored Display Applications

  • Liu, Dang;Liu, Xiaofeng;Rhee, Woogeun;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.415-424
    • /
    • 2016
  • This paper describes a high data rate proximity transmitter design for high resolution smartphone-mirrored display applications. A 2 Gb/s transmitter is designed with a low transmission power of -70 dBm/MHz and a wide bandwidth of nearly 3 GHz. A digital pre-correction method is employed in the transmitter to mitigate the inter-symbol interference problem. A carrier-based digital pulse shaping and a reconfigurable digital envelope generation methods are employed for robust operation by utilizing 20 phases from a 2 GHz phase-locked loop. A 6.5-9.5 GHz transmitter implemented in 65 nm CMOS achieves the maximum data rate of 2 Gb/s, consuming only 7.6 mW from a 1 V supply.

Fabrication of IF SDLA for Radar Applications (레이다용 IF SDLA의 제작)

  • 임경태;김화열;조홍구
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.386-398
    • /
    • 1998
  • In this paper, a high dynamic range IF logarithmic amplifier was designed and fabricated by the successive detection technique for radar systems. The fabricataed IF successive detection logarithmic amplifier(SDLA), a hybrid MIC type, achieves a logarithmic linearity of $\pm$1.4 dB and a dynamic range of 80 dB over 0.5 GHz to 1.5 GHz. The tangential signal sensitivity is -76 dBm, the NF is smaller than 5.5 dB, and the input VSWR is 2.0 : 1. This IF SDLA can be applied to radar systems by reducing the size and power consumption.

  • PDF

Design and Fabrication of Inset Fed Patch Antenna Loaded with CSLR (CSLR을 갖는 인셋 급전 패치 안테나 설계 및 제작)

  • Son, Hyeok-Woo;Kim, Byung-Mun;Park, Jin-Taek;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.549-556
    • /
    • 2015
  • In this paper, design and fabrication for inset fed microstrip patch antennas applied to the $3{\times}3$ array CSLR and eight CSLR, respectively, to the ground plane are studied. The theoretical results are compared to the experimental results for the return loss and radiation pattern. For 'CSLR 09' antenna, the theoretical result for the resonant frequency and the return loss are 2.82 GHz and - 25.35 dB, respectively. The experimental results are obtained for a 2.885 GHz, -30.72 dB. Theoretical results for the resonant frequency and the return loss of the 'CSLR 08' antenna are 2.82 GHz, -16.77 dB, respectively, and the experimental results are obtained for a 2.885 GHz, -14.90 dB. In addition, E-plane and H-plane radiation patterns in comparison with designed and fabricated antennas are in good agreement.

Design and Fabrication of Stratified Microwave Absorbing Structure Consisted of Glass/Epoxy - Resistive Sheet - Foam

  • Choi, Won-Ho;Shin, Jae-Hwan;Song, Tae-Hoon;Lee, Won-Jun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.225-230
    • /
    • 2014
  • In this study, a novel microwave absorber which consists of a structural part, a resistive sheet, and a low dielectric layer is proposed. Unlike the conventional Salisbury screen, a newly proposed absorber is capable of a range of absorbing performance, from narrowband to broadband. In the case of the narrowband absorber, the fabricated absorber with optimized design parameters has a strong resonance at 9.25 GHz and reflection loss of -44 dB with satisfying the -10 dB absorption in whole X-band (8.2 GHz~12.4 GHz). For the broadband absorber design, the reflectivity was minimized in the considered frequency ranges. The designed absorber showed two weak resonances near 6.5 GHz and 16.5 GHz and satisfied the -10 dB absorption from C-band to Ku-band (4 GHz~18 GHz). The measured reflection loss of fabricated absorber was well matched with simulation results, though the measurement was only performed on X-band. For the Salisbury screen to be capable of broadband absorption, it should be stacked multiply in a structure known as the Jaumann absorber. However, for the microwave absorber presented here, broadband as well as narrowband capabilities can be implemented without a change of the structure.

Design of Variable Active Inductor with Feedback LC-Resonator for Improvement of Q-Factor and Tuning of Operating Frequency (Q 지수의 개선과 동작 주파수 조절을 위해 궤환 LC-공진기를 이용한 가변 능동 인덕터의 설계)

  • Seo, Su-Jin;Ryu, Nam-Sik;Choi, Heung-Jae;Jeong, Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.311-320
    • /
    • 2008
  • In this paper, a new variable active inductor using a conventional grounded active inductor with feedback variable LC-resonator is proposed. The grounded active inductor is realized by the gyrator-C topology and the variable LC-resonator is realized by the low-Q spiral inductor and varactor. This variable LC-resonator can compensate the degradation of Q-factor due to parasitic capacitance of a transistor, and the frequency range with high Q-factor is adjustable by resonance frequency adjustment of LC-resonator. The fabricated variable active inductor with Magnachip $0.18{\mu}m$ CMOS process shows that high-Q frequency range can be adjusted according to varactor control voltage from 4.66 GHz to 5.45 GHz and Q-factor is higher than 50 in the operating frequency ranges. The measured inductance at 4.9GHz can be controlled from 4.12 nH to 5.97 nH by control voltage.

A Compact Three Stage Low-Pass Filter with an Ultra-Wide Stopband (초광대역의 저지대역을 갖는 3단 저역통과 필터)

  • 김경훈;정종호;기철식;임한조;박익모
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.3
    • /
    • pp.25-31
    • /
    • 2003
  • In this paper, we proposed a novel compact microstrip lowpass filter with an ultra-wide stopband and a sharp cutoff frequency response. To improve the cutoff response of the conventional filter, the coupling effect between two open stubs is used. The slot on the ground with conventional shunt open stubs plays an important role of increasing the stopband at a high frequency. The combination of these structures gives the filter the characteristics of an ultra-wide stopband with a prominent cutoff sharpness. The fabricated microstrip lowpass filter with the size of 19.2 mm $\times$ 14.9 mm has -3 dB cutoff frequency at 1.1 GHz and -20 dB stopband from 1.5 GHz to over 30 GHz. The insertion loss is less than -0.15 dB in the passband.

Evaluation of Microwave Dielectric Properties of MgO-TiO2 System by Dielectric Mixing Rules

  • Kim, Eung-Soo;Seo, Seock-No
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.163-168
    • /
    • 2010
  • Effects of compositions on the microwave dielectric properties of the MgO-$TiO_2$ system were investigated as a function of the molar ratio of MgO to $TiO_2$ ($0.9{\leq}MgO/TiO_2\;(x){\leq}1.2$). With the compositional changes, secondary phases of $MgTi_2O_5$ and $Mg_2TiO_4$ were also detected along with $MgTiO_3$. Microwave dielectric properties of the specimens were dependent on the types of phases developed in the sintered specimens. A single phase of $MgTiO_3$ showed a dielectric constant (K) of 18.2, a quality factor (Qf) of 198,000 GHz, and a temperature coefficient of resonant frequency (TCF) of $-51\;ppm/^{\circ}C$. However, the dielectric properties of the specimens with a secondary phase of $MgTi_2O_5$ (K=19.9, Qf=48,000 GHz) and/or $Mg_2TiO_4$ (K=15.6, Qf=56,000 GHz) were worsened. Dependence of the microwave dielectric properties on the secondary phase of the MgO-$TiO_2$ system was also discussed in terms of dielectric mixing rules.

A Triple-Band Transceiver Module for 2.3/2.5/3.5 GHz Mobile WiMAX Applications

  • Jang, Yeon-Su;Kang, Sung-Chan;Kim, Young-Eil;Lee, Jong-Ryul;Yi, Jae-Hoon;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • A triple-band transceiver module for 2.3/2.5/3.5 GHz mobile WiMAX, IEEE 802.16e, applications is introduced. The suggested transceiver module consists of RFIC, reconfigurable/multi-resonance MIMO antenna, embedded PCB, mobile WiMAX base band, memory and channel selection front-end module. The RFIC is fabricated in $0.13{\mu}m$ RF CMOS process and has 3.5 dB noise figure(NF) of receiver and 1 dBm maximum power of transmitter with 68-pin QFN package, $8{\times}8\;mm^2$ area. The area reduction of transceiver module is achieved by using embedded PCB which decreases area by 9% of the area of transceiver module with normal PCB. The developed triple-band mobile WiMAX transceiver module is tested by performing radio conformance test(RCT) and measuring carrier to interference plus noise ratio (CINR) and received signal strength indication (RSSI) in each 2.3/2.5/3.5 GHz frequency.