DOI QR코드

DOI QR Code

Evaluation of Microwave Dielectric Properties of MgO-TiO2 System by Dielectric Mixing Rules

  • Kim, Eung-Soo (Department of Materials Engineering, Kyonggi University) ;
  • Seo, Seock-No (Department of Materials Engineering, Kyonggi University)
  • Published : 2010.03.31

Abstract

Effects of compositions on the microwave dielectric properties of the MgO-$TiO_2$ system were investigated as a function of the molar ratio of MgO to $TiO_2$ ($0.9{\leq}MgO/TiO_2\;(x){\leq}1.2$). With the compositional changes, secondary phases of $MgTi_2O_5$ and $Mg_2TiO_4$ were also detected along with $MgTiO_3$. Microwave dielectric properties of the specimens were dependent on the types of phases developed in the sintered specimens. A single phase of $MgTiO_3$ showed a dielectric constant (K) of 18.2, a quality factor (Qf) of 198,000 GHz, and a temperature coefficient of resonant frequency (TCF) of $-51\;ppm/^{\circ}C$. However, the dielectric properties of the specimens with a secondary phase of $MgTi_2O_5$ (K=19.9, Qf=48,000 GHz) and/or $Mg_2TiO_4$ (K=15.6, Qf=56,000 GHz) were worsened. Dependence of the microwave dielectric properties on the secondary phase of the MgO-$TiO_2$ system was also discussed in terms of dielectric mixing rules.

Keywords

References

  1. X. Kuang, X. Jing, and Z. Tang, “Dielectric Loss Spectrum of Ceramic $MgTiO_3$ Investigated by AC Impedance and Microwave Resonator Measurements,” J. Am. Ceram. Soc., 89 241-46 (2006). https://doi.org/10.1111/j.1551-2916.2005.00669.x
  2. C. L. Huang and M. H. Weng, “Improved High Q Value of $MgTiO_3–CaTiO_3$ Microwave Dielectric Ceramics at Low Sintering Temperature,” Materials Research Bulletin, 36 2741-50 (2001). https://doi.org/10.1016/S0025-5408(01)00752-8
  3. J. H. Shon, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-type Titanates with High Q Values,” Jpn. J. Appl. Phys., 33 5466-70 (1994). https://doi.org/10.1143/JJAP.33.5466
  4. E. S. Kim , C. J. Jeon , S. J. Kim, and S. J. Kim, “Effects of Crystal Structure on Microwave Dielectric Properties of Ceramics,” J. Kor. Ceram. Soc., 45 [5] 251-55 (2008). https://doi.org/10.4191/KCERS.2008.45.5.251
  5. F. Massazza and E. Sirchia, “The System $MgO-SiO_2-TiO_2.$ I. Revision of the Binary Systems,” Chim. Ind. (Milan), 40 376-80 (1958).
  6. T. Roisnel and J. Rodriguez-Carvajal, “WinPLOTR: A Windows Tool for Powder Diffraction Patterns Analysis,” Mat. Sci. Forum. 378-81 118-23 (2001). https://doi.org/10.4028/www.scientific.net/MSF.378-381.118
  7. B. A. Wechsler and R. B. Von Dreele, “Structure Refinements of Mg_2TiO_4$, $MgTiO_3$ and MgTi2O5 by Time-of-flight Neutron Powder Diffraction,” Acta Cryst., B45 542-49 (1989).
  8. M. Buschbaum and H. Waburg, M., “Pseudobrookite Mit Weitgehend Geordneter Metallverteilung: $CoTi_2O_5$, MgTi_2O_5$ und FeTi_2O_5$,” Monatshefte fuer Chemie und verwandte Teile anderer Wissenschaften, 114 21-5 (1983)
  9. Barth, T. F. W. and E. Posnjak, “Spinel Structures: With and Without Variate Atom Equipoints,” Z. Kristallogr., 82 325-41 (1932)
  10. B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IRE Trans. Microwave Theory Tech, 8 402-10 (1960). https://doi.org/10.1109/TMTT.1960.1124749
  11. T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka, and Y. Ishikawa, “Precise Measurement Method for Temperature Coefficient of Microwave Dielectric Resonator Material,” IEEE MTT-S Int. Microwave Symp. Dig., 87 277-80 (1987).
  12. R. J. Hill and C. J. Howard, “Quantitative Phase Analysis from Neutron Powder Diffraction Data Using the Rietveld Method,” J. Appl. Cryst., 20 467-74 (1987). https://doi.org/10.1107/S0021889887086199
  13. G. W. Brindley, “XLV. The Effect of Grain or Particle Size on X-ray Reflections from Mixed Powders and Alloys, Considered in Relation to the Quantitative Determination of Crystalline Substances by x-ray Methods,” Phil. Mag., 36 347-69 (1945). https://doi.org/10.1080/14786444508520918
  14. R. D. Shannon, “Dielectric Polarizabilities of Ions in Oxides and Fluorides,” J. Appl. Phys., 73 348-66 (1993). https://doi.org/10.1063/1.353856
  15. W. S. Kim, T. H. Kim, E. S. Kim, and K. H. Yoon, “Microwave Dielectric Properties and Far Infrared Reflectivity Spectra of the (Zr_{0.8}Sn_{0.2})TiO_4$ Ceramics with Additives,” Jpn. J. Appl. Phys., 37 5367-71 (1998). https://doi.org/10.1143/JJAP.37.5367
  16. D. M. Iddles, A. J. Bell, and A. J. Moulson, “Relationship Between Dopants, Microstructure and the Microwave Dielectric Properties of ZrO_2-TiO_2-SnO_2$ Ceramics,” J. Mater. Sci., 27 6303-10 (1992). https://doi.org/10.1007/BF00576276

Cited by

  1. Preparation and structural study of Mg1−x Zn x TiO3 ceramics and their dielectric properties from 1 Hz to 7.7 GHz vol.27, pp.7, 2016, https://doi.org/10.1007/s10854-016-4610-6
  2. Molecular Routes to Group IV Magnesium and Calcium Nanocrystalline Ceramics vol.56, pp.18, 2017, https://doi.org/10.1021/acs.inorgchem.7b01772