• Title/Summary/Keyword: 5.8 GHz

Search Result 1,190, Processing Time 0.023 seconds

5.8GHz 25W Microwave Wireless Power Transmission System Development and Measurement (5.8GHz 25W 무선전력전송 시스템 개발 및 측정)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.21-24
    • /
    • 2019
  • In this paper, 5.8GHz 25W microwave wireless power transmission system was developed. The transmission system is composed of a signal generator, a 1W drive amplifier, a 25W power amplifier, and a circularly polarized transmission antenna. The receiving system was fabricated with an integrated receiver that combines a circularly polarized receiving antenna, a pass band filter, and an RF-DC converter. And a multi-integrated receiver had twelve parts, including an integrated receiver. Under the conditions, voltage and current were measured for the system at 5cm intervals from a minimum distance of 5cm to a maximum distance of 80cm. The power was calculated for the system. The results of the system are shown in tables and graphs. The power decreases with distance, but the power does not drop sharply due to a multi-integrated receiver.

A Sutdy on the UWB Intenna with Band-Stop Function for Mobile Handsets (대역 저지 특성을 갖는 휴대 단말기용 초소형 UWB Intenna에 관한 연구)

  • Lim, Yo-Han;Yoon, Young-Joong;Ho, Yo-Chuol;Jung, Byung-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1445-1454
    • /
    • 2008
  • In this paper, small UWB antenna with band-stop function for mobile handsets is proposed. A gap between radiator and under and side ground is adjusted for small size and broadband. A radiator is folded to the back side of PCB for miniaturization and tapered feeding structure is used to enhance matching characteristic. A antenna clearance has a size of $14{\times}14\;mm^2$ and a size of radiator is $10{\times}7\;mm^2$. It covers all UWB band from 3.15 GHz to 4.75 GHz and from 7.2 GHz to 10.2 GHz for VSWR<2 and has band stop characteristic at 5.8 GHz. A maximum gain is measured as 5.85 GHz. In case conventional handset case is considered, it also covers all UWB and a maximum gain is measured from -2 dBi to -2 dBi.

Multi-Band Chip Slot Antenna for Mobile Devices (무선 통신 기기에 적합한 다중 대역 칩 슬롯 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1264-1271
    • /
    • 2009
  • In this paper, the chip slot antenna which is used for mobile devices and designed for multi-band is proposed. The proposed antenna is comprised of a chip antenna(10 mm$\times$20 mm$\times$1.27 mm) and a system circuit board(30 mm$\times$60 mm$\times$0.8 mm). The chip slot antenna is mounted on the system circuit board and the end of F-type strip line which is patterned on the chip antenna is connected by a via with a ground plane of the system circuit board. So, a chip antenna radiates effectively the energy by transition between a microstrip line of the system circuit board and a open slot structure of the chip antenna. In the results of proposed antenna, impedance bandwidth of 3:1 VSWR(-6 dB return loss) is 1.98 GHz(1.61~3.59 GHz) and 0.8 GHz(5.2~6 GHz). So, it can cover multi-band of DCS, PCS, UMTS, WLAN. The proposed antenna can be applied to mobile devices.

UWB impulse generator using gated ring oscillator (게이티드 링 발진기를 이용한 UWB 임펄스 생성기)

  • Jang, Junyoung;Kim, Taewook
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.721-727
    • /
    • 2021
  • This paper proposes a UWB (Ultar-wideband) impulse generator using the gated ring oscillator. The oscillator and PLL circuits which generate a several GHz LO signal for the conventional architecture are replaced with the gated ring oscillator. Therefore, the system complexity is decreased. The proposed architecture controls the duty of enable signal, which is used for the head switch of ring oscillator. The control of the duty enables to tun off the oscillator during the guard interval and stop wasting the power consumption. The pulse shaping method using the counter makes the small side lobe and preserves the bandwidth regardless of the change on the center frequency. Designed UWB impulse generator could change the center frequency from 6.0 GHz to 8.8 GHz with a digital bit control, while it preserves the bandwidth as about 1.5 GHz.

Design of CMOS LC VCO with Fast AFC Technique for IEEE 802.11a/b/g Wireless LANs (IEEE 802.11a/b/g 무선 랜을 위한 고속 AFC 기법의 CMOS LC VCO의 설계)

  • Ahn Tae-Won;Yoon Chan-Geun;Moon Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.17-22
    • /
    • 2006
  • CMOS LC VCO with fast response adaptive frequency calibration (AFC) technique for IEEE 802.11a/b/g WLANs is designed in 1.8V $0.18{\mu}m$ CMOS process. The possible operation is verified for 5.8GHz band, 5.2GHz band, and 2.4GHz band using the switchable L-C resonators. To linearize its frequency-voltage gain (Kvco), optimized multiple MOS varactor biasing tecknique is used. In order to operate in each band frequency range with reduced VCO gain, 4-bit digitally controlled switched- capacitor bank is used and a wide-range digital logic quadricorrelator (WDLQ) is implemented for fast frequency detector.

Design and Fabrication of a Quadruple Band Antenna for WLAN/WiMAX Systems (900 MHz 대역을 포함한 WLAN/WiMAX 시스템에 적용 가능한 4중대역 안테나 설계 및 제작)

  • Park, Sang-wook;Choi, Tea-Il;Choi, Young-kyu;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1240-1247
    • /
    • 2019
  • In this paper, we designed a four-band antenna that can be applied to WLAN and WiMAX systems by designing a microstrip feeding structure, four branch lines and a slit on the ground plane. The proposed antenna is designed with a size of 16.0 mm (W1) × 48.0 mm (L8) on a dielectric substrate of 18.0 mm (W) × 50.0 mm (L) × 1.0 mm(h). and a slit of 2.9 mm (W7) × 4.0 mm (L7) is inserted into the ground plane of 18.0 mm (W) × 18.7 mm (L6). Based on -10 dB production and measurement results, it obtained 60.8 MHz (8,730~9,338 MHz), 310 MHz (2.33~2.64 GHz) in the 2.4 GHz band, 420MHz (3.39~3.81 GHz) in the 3.4 GHz band, and 2,070 MHz (4.62~6.69 GHz) in the 5.0 GHz. In addition, the gain and radiation pattern characteristics of the quadrant band are measured from the measurement results anechoic chamber.

Fully Embedded 2.4GHz Compact Band Pass Filter into Multi-Layered Organic Packaging Substrate

  • Lee, Seung-J.;Lee, Duk-H.;Park, Jae-Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • In this paper, fully embedded 2.4GHz WLAN band pass filter (BPF) was investigated into a multi-layered organic packaging substrate using high Q spiral stacked inductors and high Dk MIM capacitors for low cost RF System on Package (SOP) applications. The proposed 2.4GHz WLAN BPF was designed by modifying chebyshev second order filter circuit topology. It was comprised of two parallel LC resonators for obtaining two transmission zeros. It was designed by using 2D circuit and 3D EM simulators for finding out optimal geometries and verifying their applicability. It exhibited an insertion loss of max -1.7dB and return loss of min -l7dB. The two transmission zeros were observed at 1.85 and 6.7GHz, respectively. In the low frequency band of $1.8GHz{\sim}1.9GHz$, the stop band suppression of min -23dB was achieved. In the high frequency band of $4.1GHz{\sim}5.4GHz$, the stop band suppression of min -l8dB was obtained. It was the first embedded and the smallest one of the filters formed into the organic packaging substrate. It has a size of $2.2{\times}1.8{\times}0.77mm^3$.

  • PDF

Design of 2.3 GHz BPF Using Microstrip Line Structure (테프론을 이용한 2.3 GHz 협대역 대역통과필터)

  • ;Mai Linh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.148-150
    • /
    • 2002
  • In this paper, a 5-coupled BPF with teflon substrate is presented. In general, for less than 1 GHz frequency, the narrow bandwidth as well as the good characteristic in the rejection frequency band could be realized using lumped elements. However, for higher than 1 GHz frequency, the distributed elements such as microstrip lines need to be used for the design of the desired BPF For less than 2 GHz, the FR4 shows good filter characteristic at low cost. However, in the range of 2 GHz ~ 10 GHz, the filters with FR4 show a big difference between simulation and measurement results. Thus, in such a high frequency region, the teflon is more preferred to the FR4. The center frequency (fc) of the proposed filter is 2.3 GHz, the insertin loss (IL) is 1.2 dB, the return loss (RL) is 30 dB, bandwidth (BW) is 100 MHz, and the size is 8.3 cm $\times$ 4.9 cm.

  • PDF

12.5-GHz interleaved bidirectional ultra-dense WDM transmission using the beat-frequency-locking method (Beat-frequency-locking기술을 이용한 12.5 GHz 채널간격 양방향 초고밀도 WDM 광채널 전송)

  • 이재승;김상엽;서경희
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.351-354
    • /
    • 2003
  • We present a 12.5-GHz interleaved bidirectional ultra-dense wavelength-division-multiplexing transmission over a conventional single mode fiber of 80 km achieving spectral efficiency as high as 0.8-bit/s/Hz. The beat-frequency-locking method is used to stabilize the channel frequency within $\pm$200 MHz error. To facilitate the identification of multiple beat frequency signals, we use a radio-frequency spectrum analyzer. The bidirectional transmission penalty is about 0.3 dB compared with the unidirectional transmission over the same fiber.

A Study on Microstrip Array Antenna for LMDS Receiver with Corporate Feeding Network using Chebyshev Polynomials (Chebyshev 다항식을 이용한 병렬급전 구조를 가진 LMDS 수신용 마이크로스트립 배열 안테나에 관한 연구)

  • 문동권;안성훈;박명렬;정천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.827-833
    • /
    • 2002
  • In this paper, a microstrip array antenna for LMDS(Local Multipoint Distribution Service) receiver with corporate feeding network using Chebyshev polynomials is proposed to get the high gain and low side lobe level. The Chebyshev array method is proposed to design the corporate feeding network. LMDS uses 24~27 GHz microwave frequency band to send and receive broadband signals. Measured antenna shows 23.4 dBi gain, 24.96 GHz center frequency, -29.15 dB return loss and 1.2 GHz bandwidth.