• 제목/요약/키워드: 5-ethynyl-2'-deoxyuridine (EdU)

검색결과 8건 처리시간 0.026초

5-ethynyl-2'-deoxyuridine (EdU)에 의한 뇌실하 영역 신경줄기세포의 신경 세포로의 분화 억제 (Inhibition of Neurogenesis of Subventricular Zone Neural Stem Cells by 5-ethynyl-2'-deoxyuridine (EdU))

  • 박기엽;오현창;이지용;김만수
    • 생명과학회지
    • /
    • 제27권6호
    • /
    • pp.623-631
    • /
    • 2017
  • 뇌실하 영역과 subgranular zone은 뇌에서 평생 새로운 신경 세포를 만들어 내는 곳이다. 이 부위에 있는 신경줄기세포는 세포 분열을 통해서 줄기 세포군을 계속 유지할 뿐만 아니라, 신경 세포와 신경 교세포로 분화한다. 세포 분열을 측정하기 위해 thymidine 유사체인 5-ethynyl-2'-deoxyuridine (EdU)가 사용되어 왔다. 몇몇의 경우에서는 새롭게 만들어지는 신경 세포를 표지하려는 목적으로 사용되었다. 이번 연구에서는, EdU가 쥐의 뇌실 하영역에서 분리해낸 신경줄기세포의 분열과 분화에 어떠한 영향을 미치는 지를 보여주었다. 첫째, 신경줄기세포가 EdU를 포함하는 세포 증식 배양액에서 24시간 동안 배양되었을 때, 추후에 분화를 유도하여도 신경세포로 분화가 전혀 일어나지 않았다. EdU를 1시간 동안 처리했을 때도 신경세포로의 분화가 상당부분 저해되었다. 둘째, EdU는 농도가 높을수록, 처리시간이 많을수록 신경줄기세포의 증식을 더욱 많이 저해하였다. 끝으로, EdU는 신경 교세포 중에서 oligodendrocyte으로의 분화는 억제하였지만, astrocyte로의 분화는 오히려 증가시켰다. 본 연구결과는 뇌실하 영역 신경줄기세포의 분화에 EdU가 어떠한 영향을 미치는 지를 처음으로 보여주었고, 이러한 결과들은 신경 세포와 oligodendrocyte로의 분화에 세포 분열이 반드시 필요하다는 것을 제안하고 있다.

AntagomiR-27a Targets FOXO3a in Glioblastoma and Suppresses U87 Cell Growth in Vitro and in Vivo

  • Ge, Yun-Fei;Sun, Jun;Jin, Chun-Jie;Cao, Bo-Qiang;Jiang, Zhi-Feng;Shao, Jun-Fei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.963-968
    • /
    • 2013
  • Objective: To study the effect of the antagomiR-27a inhibitor on glioblastoma cells. Methods: The miR-27a expression level in specimens of human glioblastoma and normal human brain tissues excised during decompression for traumatic brain injury was assessed using qRT-PCR; The predicted target gene of miR-27a was screened out through bioinformatics databases, and the predicted gene was verified using genetic report assays; the effect of antagomiR-27a on the invasion and proliferation of glioma cells was analyzed using MTT assays and 5-ethynyl-2'-deoxyuridine (EdU) labeling. A xenograft glioblastoma model in BALB-c nude mice was established to detect the effect of antagomiR-27a on tumour growth. Results: qRT-PCR results showed that miR-27a significantly increased in specimens from glioblastoma comparing with normal human brain tissues. Th miR-27a inhibitor significantly suppressed invasion and proliferation of glioblastoma cells. FOXO3a was verified as a new target of miR-27a by Western blotting and reporter analyzes. Tumor growth in vivo was suppressed by administration of the miR-27a inhibitor. Conclusion: MiR-27a may be up-regulated in human glioblastoma, and antagomiR-27a could inhibit the proliferation and invasion ability of glioblastoma cells.

Production and development of porcine tetraploid parthenogenetic embryos

  • Lin, Tao;Lee, Jae Eun;Shin, Hyeon Yeong;Lee, Joo Bin;Kim, So Yeon;Jin, Dong Il
    • Journal of Animal Science and Technology
    • /
    • 제61권4호
    • /
    • pp.225-233
    • /
    • 2019
  • The aim of this study was to produce porcine tetraploid (4N) parthenogenetic embryos using various methods and evaluate their developmental potential. In method 1 (M1), porcine 4N parthenogenetic embryos were obtained by inhibiting extrusion of both first (PB1) and second (PB2) polar bodies; in methods 2 (M2) and 3 (M3), 4N parthenogenetic embryos were obtained by electrofusion of 2-cell stage diploid parthenogenetic embryos derived from inhibition of PB2 or PB1 extrusion, respectively. We found no differences in the rates of cleavage or blastocyst formation or the proportion of 4N embryos among M1, M2, and M3 groups. The different methods also did not influence apoptosis rates (number of TUNEL-positive cells/number of total cells) or expression levels of apoptosis-related BAX and BCL2L1 genes. However, total cell and EdU (5-ethynyl-2'-deoxyuridine)-positive cell numbers in 4N parthenogenetic blastocysts derived from M1 were higher (p < 0.05) than those for M2 and M3 groups. Our results suggest that, although porcine 4N parthenogenetic embryos could be produced by a variety of methods, inhibition of PB1 and PB2 extrusion (M1) is superior to electrofusion of 2-cell stage diploid parthenogenetic embryos derived from inhibition of PB2 (M2) or PB1 (M3) extrusion.

Lysophosphatidic acid improves development of porcine somatic cell nuclear transfer embryos

  • Ling Sun;Tao Lin;Jae Eun Lee;So Yeon Kim;Ying Bai;Dong Il Jin
    • Journal of Animal Science and Technology
    • /
    • 제66권4호
    • /
    • pp.726-739
    • /
    • 2024
  • This study was conducted to investigate whether lysophosphatidic acid (LPA) could improve the development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine SCNT-derived embryos were cultured in chemically defined polyvinyl alcohol (PVA)-based porcine zygote medium (PZM)-4 without or with LPA, and the development, cell proliferation potential, apoptosis, and expression levels of pluripotent markers were evaluated. LPA significantly increased the rates of cleavage and blastocyst formation compared to those seen in the LPA un-treatment (control) group. The expression levels of embryonic development-related genes (IGF2R, PCNA and CDH1) were higher (p < 0.05) in the LPA treatment group than in the control group. LPA significantly increased the numbers of total, inner cell mass and EdU (5-ethynyl-2'-deoxyuridine)-positive cells in porcine SCNT blastocysts compared to those seen in the control group. TUNEL assay showed that LPA significantly reduced the apoptosis rate in porcine SCNT-derived embryos; this was confirmed by decreases (p < 0.05) in the expression levels of pro-apoptotic genes, BAX and CASP3, and an increase (p < 0.05) in the expression level of the anti-apoptotic gene, BCL2L1. In addition, LPA significantly increased Oct4 expression at the gene and protein levels. Together, our data suggest that LPA improves the quality and development of porcine SCNT-derived embryos by reducing apoptosis and enhancing cell proliferation and pluripotency.

ssc-miR-185 targets cell division cycle 42 and promotes the proliferation of intestinal porcine epithelial cell

  • Wang, Wei;Wang, Pengfei;Xie, Kaihui;Luo, Ruirui;Gao, Xiaoli;Yan, Zunqiang;Huang, Xiaoyu;Yang, Qiaoli;Gun, Shuangbao
    • Animal Bioscience
    • /
    • 제34권5호
    • /
    • pp.801-810
    • /
    • 2021
  • Objective: microRNAs (miRNAs) can play a role in a variety of physiological and pathological processes, and their role is achieved by regulating the expression of target genes. Our previous high-throughput sequencing found that ssc-miR-185 plays an important regulatory role in piglet diarrhea, but its specific target genes and functions in intestinal porcine epithelial cell (IPEC-J2) are still unclear. We intended to verify the target relationship between porcine miR-185 and cell division cycle 42 (CDC42) gene in IPEC-J2 and to explore the effect of miR-185 on the proliferation of IPEC-J2 cells. Methods: The TargetScan, miRDB, and miRanda software were used to predict the target genes of porcine miR-185, and CDC42 was selected as a candidate target gene. The CDC42-3' UTR-wild type (WT) and CDC42-3'UTR-mutant type (MUT) segments were successfully cloned into pmirGLO luciferase vector, and the luciferase activity was detected after co-transfection with miR-185 mimics and pmirGLO-CDC42-3'UTR. The expression level of CDC42 was analyzed using quantitative polymerase chain reaction and Western blot. The proliferation of IPEC-J2 was detected using cell counting kit-8 (CCK-8), methylthiazolyldiphenyl-tetrazolium bromide (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays. Results: Double enzyme digestion and sequencing confirmed that CDC42-3'UTR-WT and CDC42-3'UTR-MUT were successfully cloned into pmirGLO luciferase reporter vector, and the luciferase activity was significantly reduced after co-transfection with miR-185 mimics and CDC42-3'UTR-WT. Further we found that the mRNA and protein expression level of CDC42 were down-regulated after transfection with miR-185 mimics, while the opposite trend was observed after transfection with miR-185 inhibitor (p<0.01). In addition, the CCK-8, MTT, and EdU results demonstrated that miR-185 promotes IPEC-J2 cells proliferation by targeting CDC42. Conclusion: These findings indicate that porcine miR-185 can directly target CDC42 and promote the proliferation of IPEC-J2 cells. However, the detailed regulatory mechanism of miR-185/CDC42 axis in piglets' resistance to diarrhea is yet to be elucidated in further investigation.

KIF26B-AS1 Regulates TLR4 and Activates the TLR4 Signaling Pathway to Promote Malignant Progression of Laryngeal Cancer

  • Li, Li;Han, Jiahui;Zhang, Shujia;Dong, Chunguang;Xiao, Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권10호
    • /
    • pp.1344-1354
    • /
    • 2022
  • Laryngeal cancer is one of the highest incidence, most prevalently diagnosed head and neck cancers, making it critically necessary to probe effective targets for laryngeal cancer treatment. Here, real-time quantitative reverse transcription PCR (qRT-PCR) and western blot analysis were used to detect gene expression levels in laryngeal cancer cell lines. Fluorescence in situ hybridization (FISH) and subcellular fractionation assays were used to detect the subcellular location. Functional assays encompassing Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were performed to examine the effects of target genes on cell proliferation and migration in laryngeal cancer. The in vivo effects were proved by animal experiments. RNA-binding protein immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays were used to investigate the underlying regulatory mechanisms. The results showed that KIF26B antisense RNA 1 (KIF26B-AS1) propels cell proliferation and migration in laryngeal cancer and regulates the toll-like receptor 4 (TLR4) signaling pathway. KIF26B-AS1 also recruits FUS to stabilize TLR4 mRNA, consequently activating the TLR4 signaling pathway. Furthermore, KIF26B-AS1 plays an oncogenic role in laryngeal cancer via upregulating TLR4 expression as well as the FUS/TLR4 pathway axis, findings which offer novel insight for targeted therapies in the treatment of laryngeal cancer patients.

L-type 칼슘 채널을 저해하는 저해제, nifedipine에 의한 쥐 뇌실하 영역 신경줄기세포의 신경세포로의 분화 촉진 (Increase in Neurogenesis of Neural Stem Cells Cultured from Postnatal Mouse Subventricular Zone by Nifedipine)

  • 박기엽;김만수
    • 생명과학회지
    • /
    • 제32권2호
    • /
    • pp.108-118
    • /
    • 2022
  • 뇌실하 영역은 뇌에서 신경줄기세포가 분포하는 곳으로 평생에 걸쳐 새로운 신경세포를 생성하는 곳이다. 많은 세포 안팎의 인자들이 신경줄기세포의 세포 증식과 신경세포로의 분화에 영향을 미친다. 최근 들어, L-type 칼슘 채널이 신경계의 발달을 조절하고 뇌실하 영역에 있는 신경줄기세포, 신경세포로 분화 중인 세포, 그리고 성숙한 신경세포에 분포한다고 밝혀졌다. L-type 칼슘 채널의 저해제인 nifedipine은 고혈압의 치료제로 오랜 기간 사용되어 왔다. 신경줄기세포에 nifedipine을 사용하여 L-type 칼슘 채널을 저해하는 연구는 많이 없는 상황이다. 이번 연구에서, 우리는 5일령 쥐의 뇌실하 영역에서 배양한 신경줄기세포에 nifedipine을 처리하여 신경세포로의 분화에 미치는 영향을 관찰하였다. Nifedipine은 Tuj1을 발현하는 신경세포의 수를 증가시킨 반면, Olig2를 발현하는 희소 돌기 아교 세포(oligodendrocytes)의 수에는 큰 영향을 미치지 않았다. Nifedipine은 S기를 표지하는 5-ethynyl-2'-deoxyuridine (EdU)가 들어간 세포의 수를 증가시켰고, 세포 분열시 나타나는 인산화된 히스톤 H3(PH3)를 발현하는 세포의 수를 증가시켰다. Nifedipine은 신경세포로의 분화를 촉진하는 Dlx2 유전자의 전사를 증가시켰고, 초기 신경세포에서 보이는 Mash1의 양도 증가시켰다. Nifedipine 외 또다른 L-type 칼슘 채널의 저해제인 verapamil을 처리하자, 신경세포로의 분화가 소폭 증가하였으나, 통계적 유의미성은 매우 낮았다. T-type 칼슘 채널의 저해제 유전자인 Cav3.1, Cav3.2, Cav3.3가 발현함을 관찰하여, T-type 칼슘 채널의 저해제인 pimozide를 신경줄기세포에 처리하였으나, 신경세포로의 분화에는 변화가 없었다. 이러한 결과를 통해 nifedipine이 신경줄기세포의 초기 분화를 증진함을 알 수 있으며, L-type 칼슘 채널이 신경세포로의 분화에 관여함을 알 수 있다.

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.