• Title/Summary/Keyword: 5-axis

Search Result 2,914, Processing Time 0.036 seconds

Histological Studies on the Exuvial Gland in a Non-moulting Silkworm, Bombyx mori L (회피불능잠의 피선에 관한 조직학적 연구)

  • 윤종관;사기언
    • Journal of Sericultural and Entomological Science
    • /
    • v.16 no.2
    • /
    • pp.119-125
    • /
    • 1974
  • When the nomal silkworms reached active time of 3rd instar stage both non-moulting larva and normal silkworms from the same rearing tray were collected and fixed. The silkworms in 4th instar stage whose growth was as dwarfish as those in 1st and 2nd instar stages were also collected and fix with the normal silkworms. Non-moulting larva and normal silkworms were morphologically compared and the examined results from the tissue inspection are summarized as follows: 1. In spite of the fact that the normal silkworms reached the active eating time of 3rd instar stage non-moulting silkworms were dwarfish as if they had been reared for two days. Non-moulting silkworms which were observed at the time of 4th instar stage showed no much difference in their growth. 2. There was the tendency that the exuvial gland as was shown in Fig. 1 and 2 was flat cyslidium of ellipse and its size at thorax was small shile the gland at abdomen was big. 3. The exuvial gland at thorax has been reported to be bigger at thoracic base than at dorsal vessel but according to the present it was examined to be irregular. 4. The size of exuvial gland of silkworms in the active eating stage of 3rd instar was from 151.3${\mu}$ (major axis) to 94.5${\mu}$ (minor axis) at prothorax and from 568.6${\mu}$ (major axis) to 495.1${\mu}$ (minor axis) at 7th abdominal segment. The sire oe exuvial gland of non-moulting silkworm was 57.5${\mu}$ (major axis) to 51.3${\mu}$ (minor axis) at prothorax and from 91.5${\mu}$ (major axis) to 75.5${\mu}$ (minor axis) at 5th abdominal segment (see Fig. 1) 5. When the normal silkworms reached 4th instar active eating stage its exuvial gland was compared to that of dwarfish silkworm. The result was that the size of normal silkworm at prothorax was from 252.2${\mu}$ (major axis) to 131.6${\mu}$ (minor axis) and the size of exuvial gland at 7th abdominal segment was from 691.5${\mu}$ (major axis) to 493.4${\mu}$ (minor axis) while the sire of exuvial gland of non-moulting at prothorax was from 71.4${\mu}$ (major axis) to 61.5${\mu}$ (minor axis) and the size of the non-moulting silkworm's 8th abdominal segment was from 94.6${\mu}$ (major axis) to 71.5${\mu}$ (minor axis) (See Table 2) 6. There was a remarkable difference in the from of exuvial gland of non-moulting silkworm. The size of alveolar of the non-moulting silkworm was many times larger compared to that of normal silkworm 7. There was no great difference between secretory cells of normal and non-moulting silkworms but the granular type exuvial gland was small in sire compared to that of normal silkworm.

  • PDF

AN EXPERIMENTAL STUDY ON THE HINGE AXIS POINT (Hinge Axis Point에 관(關)한 실험적(實驗的) 연구(硏究))

  • Jo, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 1976
  • Casts are often transferred to the articulator by arbitrary means, because the method of locating the true hinge axis point thought to be a complicated and time consuming procedure, and because the importance and significance of the true hinge axis in the construction of dental prosthesis is not sufficiently understood. In this report, the author constructed the hinge axis locator and determined the variations in location of the true hinge axis points from the location of the hinge axis point determined by arbitrary means. For this report, the procedure was followed on 50 persons with normal occlusion and sound T.M.J. function, so 100 true hinge axis points were recorded and compared with the arbitrary hinge axis point. The results obtained were as follows. 1. The mean distance from the arbitrary hinge axis point to the true hinge axis point was as follows. Right; (O)5.17mm., (V)3.44mm., (H)3.55mm.. Left; (O)5.63mm., (V)3.95mm., (H)3.51mm.. 2. The percentage of true hinge axis points classified at intervals of 2mm was as follows. 0-2mm; 4%, 2-4mm; 21%, 4-6mm; 37%, 6-8mm; 26%, 8-10mm; 10%, Over 10mm; 2%. And only 50% of the 100 true hinge axis points were located within a 5mm. radius of the arbitrary hinge axis point. 3. Instead of transferring the casts to the articulator by arbitrary means, the careful location of the true hinge axis points is recommended to avoid potential sources of error in mounting casts.

  • PDF

Optimal Tool Length Computation of NC Data for 5-axis Ball-ended Milling (5축 볼엔드밀 가공 NC 데이터의 최적 공구 길이 계산)

  • Cho, Hyeon-Uk;Park, Jung-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.354-361
    • /
    • 2010
  • The paper presents an efficient computation of optimal tool length for 5-axis mold & die machining. The implemented procedure processes an NC file as an initial input, where the NC data is generated by another commercial CAM system. A commercial CAM system generates 5-axis machining NC data which, in its own way, is optimal based on pre-defined machining condition such as tool-path pattern, tool-axis control via inclination angles, etc. The proper tool-length should also be provided. The tool-length should be as small as possible in order to enhance machinability as well as surface finish. A feasible tool-length at each NC block can be obtained by checking interference between workpiece and tool components, usually when the tool-axis is not modified at this stage for most CAM systems. Then the minimum feasible tool-length for an NC file consisting of N blocks is the maximum of N tool-length values. However, it can be noted that slight modification of tool-axis at each block may reduce the minimum feasible tool-length in mold & die machining. This approach can effectively be applied in machining feature regions such as steep wall or deep cavity. It has been implemented and is used at a molding die manufacturing company in Korea.

A Study of the Hinge Axis Point (Hinge Axis Point에 관한 연구)

  • Jung, Kum-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.22 no.1
    • /
    • pp.72-78
    • /
    • 1984
  • The notion that the axis of the shaft of the articulator must coincide the patient's mandibular transverse axis tells us the importance of locating the axis precisely. When using kinematic axis to transfer a cast to an articulator, the anatomic asymmetry of the contralateral points will result in certain distortion when the axis transferred to an articulator where the mechanical axis produces symmetry. In this study, after locating the true hinge axis point with Denar hinge axis locator, the discrepancies between true hinge axis point and arbitrary hinge axis point that was 13mm anterior from the posterior margin of center of trangus to the outer canthus of eye were measured. And the discrepancies between left and right true hinge axis point in the superoinferior and anteroposterior directions were measured. For this study, 20 dental students who have no missing teeth and no difficulties of mandibular movement were selected. Upper and lower cast of subjects were mounted on Denar Mark II articulator uisng Denar Slidematic face-bow and centric relation record for the measurement of discrepancies between left and right true hinge axis points. The results obtained as follows. 1. The mean distance from the arbitrary hinge axis point to the true hinge axis point was as follows. Right: horizontal distance; 1.99mm, vertical distance; 2.12mm, linear distance; 3.36 mm. Left: horizontal distance; 1.39mm, vertical distance; 2.06mm, linear distance; 2.09mm. Total: horizontal distance; 1.69mm, vertical distance; 2.09mm linear distance; 3.06 mm. 2. The 87.5% of true hinge axis points were within 5mm of the arbitrary hinge axis point. 3. The mean discrepancies between the right and left hinge axis point were 2.92mm in superoinferior direction and 4.74mm in anteroposterior direction. 4. When transferring the axis to the articulator, anatomic asymmetry between right: and left axis point produces in dislocation of cast on the articulator, and undesirable shift in esthetic tooth position will be resulted.

  • PDF

A Study on the Test Workpiece for Accuracy Evaluation of 5-Axis Machine Tool (5축 공작기계 정밀도 평가를 위한 표준 공작물에 관한 연구)

  • Youn, Jae-Woong;Kim, Ki-Hwan;Park, Jong Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • Recently, a demand for precision 5-axis machine tools is significantly increasing, and the maintenance of machine tool accuracy becomes more important. it is very difficult to evaluate to accuracy of 5-axis M/C in the production site since it needs expensive measuring equipment and skilled engineer. On the other hand, evaluation items of 5-axis M/C are not systematically organized in the existing KS and ISO standards. In this study, the evaluation items for 5-axis M/C were derived systematically and a test workpiece was developed to evaluate the machine tool accuracy more easily. The error sources of machine tool can be estimated by machining and measuring of the test workpiece. The correlation between the machine tool accuracy and the accuracy of machined test workpiece was analyzed. As a result, the accuracy of machined test workpiece represented the accuracy of machine tool and the error sources very effectively.

A Study on Post-Processing and Machine Simulation of AC Type 5-Axis Machine Tool for Machining of Mold Surface (금형 곡면 가공을 위한 AC타입 5축 가공기의 포스트프로세싱 및 머신 시뮬레이션에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae;Ko, Dae-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.30-35
    • /
    • 2021
  • In this study, a machine simulation system was built using the actual scale of an AC-type 5-axis machine tool for mold surface machining that can be used in applications, such as, modeling and machine building, stroke, and collision detection. The validity of the 5-axis machine simulation system was verified by performing tool path generation, post-processing, machine simulation, prototype motion simulation, and an actual cutting experiment. This entire process was intended to activate the 5-axis machining in mold surface machining.

5-Axis CNC Machining for Drum Cam with Rotational Follower - I (Post Processing Method for Rough Machining) (회전형 종동절을 갖는 드럼 캠의 5-축 CNC 가공 - I (황삭가공을 위한 포스트 프로세싱))

  • Cho, Hyun-Deog;Yoon, Moon-Chul;Kim, Kyung-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.678-683
    • /
    • 2010
  • The drum cam with rotational follower is used to apply the ATC and index table of machine tools and it has the merit of minimizing the backlash. In general, to machine the drum cam with rotational follower, 5-axis CNC machine must be used and its kinematic principle must be included in modeling on CAM. So, the commercialized CAM software can't be applied to this machining of drum cam. Though some special software for machining drum cam was developed, it could be applied to special 5-axis CNC machine tools and the finish machining module was not applied. To solve this problem, this study includes the induction of the post processing algorithm for the rough machining of drum cam on several 5-axis CNC machine tools, type AC, AB and Be. The finish machining software will be treated in next study. A sample drum cam was machined on 5-axis CNC machine tool of AC type. The designed geometric profile of drum cam consist to the measured profile after machining well. This post processing algorithm for rough machining of the drum cam was clearly verified.

A Study on the 5-Axis Machining of Impeller Blades with Ruled Surfaces (Ruled Surface로 형성된 임펠러 블레이드의 5-축 가공에 관한 연구)

  • 정대일;조현덕;윤문철;최두선;신보성;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.175-180
    • /
    • 2000
  • This paper describes the method and the process for impeller machining on 5-axis CNC machining center. Also, The CAD/CAM software for the impeller post processing is developed. The software can be interfaced with Solid-works software for confirmation of the impeller shapes. In this study, blades on impeller is described from Ruled-surfaces between two Ferguson curves. In this study, using 5-axis NC part program obtained from the developed software, a sample impeller was machined on 5-axis CNC machining center. The machined impeller was very agreeable to the designed impeller. Thus, theories proposed in this study can be very useful for the 5-axis machining of impeller blades with Ruled-surfaces.

  • PDF