• Title/Summary/Keyword: 5-Hydroxyindole

Search Result 13, Processing Time 0.02 seconds

Protectins Effects of Vitamin E against Immobilization Stress-Induced Oxidative Damage in Rat Brain (스트레스로 인한 뇌조직의 산화적 손상에서 Vitamin E의 방어 효과)

  • 박미현;강상모;정혜영;홍성길
    • Journal of Nutrition and Health
    • /
    • v.36 no.6
    • /
    • pp.570-576
    • /
    • 2003
  • The remarkable change of phenomenon induced by stress increase energy metabolism that can induce many reactive oxygen species (ROS) production. ROS can peroxidize cellular macromolecules including lipid and protein. The object of this study was to investigate whether stress may induce cellular damage by producing ROS and whether vitamin E, as a strong lipid-soluble antioxidant, can protect cells against reactive oxygen species produced by noise and immobilization stress in SD rats. The stress group increased 5-hydroxyindole aceti acid (5-HIAA) , one of the stress hormone, in brain tissue and free fatty acid in plasma. Vitamin I treatment had no effect on 5-HIAA but free fatty acid contents decreased with a fortified vitamin I diet. Furthermore, the body weight of vitamin I-treated rats increased more than that of the stress group. Lipid peroxidation and protein degradation as an index of oxidative damage in brain tissue decreased with the use of the fortified vitamin I diet supplement. The results suggest that vitamin I supplements have a protective effect against noise and immobilization stress-induced oxidative damage in brain tissue.

Gene Cloning and Enzymatic Properties of Thermostable Laccase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 laccase의 유전자 클로닝 및 효소학적 특성)

  • Lee, So-Young;Jung, Young-Hoon;Seo, Min-Ho;Jeon, Sung-Jong
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.257-262
    • /
    • 2012
  • The gene encoding Thermus thermophilus HJ6 laccase (Tt-laccase) was cloned, sequenced, and comprised of 1,389 nucleotides encoding a protein (462 amino acids) with a predicted molecular mass of 51,049 Da. The deduced amino acid sequence of Tt-laccase showed 99.7% and 44.3% identities to the Thermus thermophilus HB27 laccase and Synechococcus sp. RS9917 laccase, respectively. Tt-laccase gene was expressed as a fusion protein with six histidine residues in E. coli Rosetta-gami (DE3) cells, and the recombinant protein was purified to homogeneity. UV-Vis spectrum analysis revealed that the enzyme has copper atoms, a type I Cu(II) and a type III binuclear Cu(II). The optimum pH for the oxidation of guaiacol was 5.0 and the optimum temperature was $90^{\circ}C$ The half-life of heat inactivation was about 120 min at $90^{\circ}C$ The enzyme reaction was inhibited by sodium azide, L-cystein, EDTA, dithiothreitol, tropolone, and kojic acid. The enzyme oxidized various known laccase substrates, its lowest $K_m$ value being for 4-hydroxyindole, highest $k_{cat}$ value for syringaldazine, and highest $k_{cat}/K_m$ for guaiacol.

Protecting Effects by Rooibos Tea against Immobilization Stress-induced Cellular Damage in Rat (흰 쥐의 고정화 스트레스에 대한 루이보스티의 방어 효과)

  • Hong, Seong-Gil;Seo, Won-Sang;Jung, Ho-Kwon;Kang, Sang-Mo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1222-1228
    • /
    • 1998
  • Stress will induce various changes in human metabolism. The remarkable phenomenon of these changes is increased energy metabolism that can induce many reactive oxygen species (ROS) production. ROS can peroxidize cellular macromolecules including lipid and protein. The object of this study was to investigate that stress may induce cellular damage by producing ROS and that Rooibos tea can protect cells against reactive oxygen species by immobilization stress in SD rat. The stress group significantly increased in 5-hydroxyindole acetic acid (5-HIAA), one of the stress hormone. Rooibos tea treatment had no effects on 5-HIAA contents, but body weight of Rooibos tea treated rat more increased than that of only the stress group. It was suggested that Rooibos tea colud not affect stress response itself, but protect against the another mechanism. We thought that the oxidative damage was caused by increased energy metabolism. Protein degradation level and lipid peroxide formation on index of oxidative damage significantly increased in the stress group. But the stress-induced activity change could not be observed in antioxidative enzymes such as superoxide dismutase, glutathione peroxidase and glutathione reductase. But the catalase activity of the brain significantly was inhibited by the stress. From these results, it was suggested that the immobilization stress induce the brain oxidative damage. However the oxidative damage was inhibited by feeding Rooibos tea containing various antioxidants, such as polyphenol, flavonoid and so on. Therefore, Rooibos tea have the protective effects against the stress caused by the ROS mediated cellular damage.

  • PDF