Protectins Effects of Vitamin E against Immobilization Stress-Induced Oxidative Damage in Rat Brain

스트레스로 인한 뇌조직의 산화적 손상에서 Vitamin E의 방어 효과

  • 박미현 (㈜이롬라이프 생명과학연구원) ;
  • 강상모 (건국대학교 미생물공학과) ;
  • 정혜영 (경원전문대학교 생활과학과) ;
  • 홍성길 (㈜이롬라이프 생명과학연구원)
  • Published : 2003.07.01

Abstract

The remarkable change of phenomenon induced by stress increase energy metabolism that can induce many reactive oxygen species (ROS) production. ROS can peroxidize cellular macromolecules including lipid and protein. The object of this study was to investigate whether stress may induce cellular damage by producing ROS and whether vitamin E, as a strong lipid-soluble antioxidant, can protect cells against reactive oxygen species produced by noise and immobilization stress in SD rats. The stress group increased 5-hydroxyindole aceti acid (5-HIAA) , one of the stress hormone, in brain tissue and free fatty acid in plasma. Vitamin I treatment had no effect on 5-HIAA but free fatty acid contents decreased with a fortified vitamin I diet. Furthermore, the body weight of vitamin I-treated rats increased more than that of the stress group. Lipid peroxidation and protein degradation as an index of oxidative damage in brain tissue decreased with the use of the fortified vitamin I diet supplement. The results suggest that vitamin I supplements have a protective effect against noise and immobilization stress-induced oxidative damage in brain tissue.

스트레스에 의해서 생체는 에너지 대사를 증가시키며, 에너지 대사의 증가는 높은 반응성의 ROS를 생성한다. ROS는 높은 반응성으로 인해 지질, 단백질 등을 과산화시켜 원래의 활성을 잃게 한다. 이런 ROS에 대해서 높은 소거능을 지닌 vitamin I의 투여는 스트레스로 인한 생체내 산화적 손상을 억제할 수 있을 것으로 생각된다. 이런 효능을 확인하기 위하여 실험용 흰 쥐에게 4주간의 noise 및 고정화 스트레스를 가한 결과, 스트레스를 가함으로서 체중증가량을 감소시켰으며, 스트레스 지표 물질인 5-HIAA와 혈청내 유리 지방산의 증가 및 뇌조직의 산화적 손상이 증가되어 정상적으로 스트레스가 가해졌음을 확인할 수 있었다. 또한, vitamin E 투여군의 경우 혈청내에서의 vitamin E 농도가 유의적으로 증가하여 정상적인 vitamin E의 투여도 이루어졌음을 확인하였다. Vitamin E의 투여는 스트레스로 인한 체중 증가량의 감소를 억제하였으며, 또한 뇌조직의 단백질 및 지질의 산화적 손상을 억제하는 효능을 보였으며, SOD의 활성 또한 증가시키는 효능을 나타냈다. 따라서, vitamin E 투여는 스트레스로 인하여 발생하는 뇌조직의 산화적 손상을 억제함으로서 스트레스에 대한 방어 효능이 일부 있는 것으로 생각된다.

Keywords

References

  1. The stress of life Seley H
  2. Kennet GA, Dickson SL, Croson G. Enhancement of some 5-HT dependent behavioural response following repeated immobilization in rats. Brain Res 330: 253-263, 1985 https://doi.org/10.1016/0006-8993(85)90684-5
  3. Bulkley GB. The role of oxygen radicals in human disease process. Surgery 94 (3) : 407-411, 1983
  4. Shaw S, Jayatileke E. The role of cellular oxidase and catalytic iron in the pathogenesis of ethanol-induced liver injury. Life Sci 50: 2045-2052, 1992 https://doi.org/10.1016/0024-3205(92)90570-F
  5. Halliwell B, Getteridge JMC. Oxygen toxicity, oxygen radicals transition metals and disease. Biochem J219: 1-14, 1984
  6. Bendich AD, Polito E, Machlin LJ. Interaction of dietary vitamin C and vitamin E on guinea pig immune responses to mitogens. J Nutri 114: 1588-1593, 1984
  7. John NC, Gutteridge I. Lipid peroxidation and antioxidants as biomarker of tissue damage. Clin Chem 41(12): 1819-1828, 1995
  8. Yoshikawa T, Naito Y, Kondo M. Antioxidants in the therapy and preventive medicine. Ed. I. Emeril, Plenum Press. pp.171-181, New York, 1990
  9. Borg DC, KM Schaich. Prooxidants action of antioxidant. In: Handbook of Free radicals and antioxidant in biomedicine. Vol I. pp.63-80, CRC press, 1989
  10. Lippmann RD. Free radical induced lipoperoxidation and aging. In: Handbook of Free radicals and antioxidant in biomedicine. Vol I. pp.187-198. CRC press, 1989
  11. Hess JL. Vitamin E, α-tocopherol. In: Antioxidant in higher plants. pp. 112-132, CRC Press, 1993
  12. Shors TJ, Weiss C, Thompson RF. Stress-induced facilitation of classical conditioning. Sceince 257: 537-539, 1992 https://doi.org/10.1126/science.1636089
  13. Crozon G, Knoott PJ. Rapid method for the determination of 5-HT and 5-HIAA in small region of brain. J Neurochem 19: 1967-1974, 1972 https://doi.org/10.1111/j.1471-4159.1972.tb01486.x
  14. Smith JB, Ingerman CM, Silver MJ. Malondialdehyde formation as an indicator of prostaglandin production by human platelets. J Lab Clin Med88(1): 167-172, 1976
  15. Yagi K. A simple fluofometric assay for lipoperoxide in blood plasma. Biochem Med 15: 212-216, 1976 https://doi.org/10.1016/0006-2944(76)90049-1
  16. Levine RL, Garlend D, Oliver CN, Ameci A, Climet I, Lenz AG Ahn BW, Shaltiel S, Stadtman ER. Determination of carbonyl content in oxidatively modified proteins. Methods in enzymology 186: 464-471, 1990 https://doi.org/10.1016/0076-6879(90)86141-H
  17. Davies KJA, Glodberg AL. Protein damaged by oxygen radicals are rapidly degraded in the extracts of red blood cell. Biol Chem 262: 8227-8235, 1987
  18. Marklund S, Marlund G. Involvement of the superoxide anion radical in the antioxidation of pyrogallol and a convenient assay for superoxide dismutase. J Biochem 47: 469-474, 1974
  19. Hissin PJ, Hilf R. A fluoremetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74: 214-226, 1976 https://doi.org/10.1016/0003-2697(76)90326-2
  20. Desai ID. Vitamin E analysis methods for animal tissues. Methods in Enzymology 105: 138-155, 1984 https://doi.org/10.1016/S0076-6879(84)05019-9
  21. Morley JE, Levine AS. Stress-induced eating is mediated through endogenous. Scince 209(12):9-12, 1980
  22. Odio MR, Maickel RP. Comparative biochemical response of rats to different stressful stimuli. Physiology Behavior 34: 596-599 1985 https://doi.org/10.1016/0031-9384(85)90054-X
  23. Watson BD, Busto B, Goldberg WJ, Santiso K, Yoshida S, Ginsberg MD. Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J Neurochem 42: 268-274, 1984 https://doi.org/10.1111/j.1471-4159.1984.tb09728.x