• Title/Summary/Keyword: 5-Axis Tool path

Search Result 62, Processing Time 0.031 seconds

A Study on Efficient Roughing of Impeller with Ruled Surface (룰드 곡면으로 된 임펠러의 효율적인 황삭 가공에 관한 연구)

  • 임기남;장동규;이희관;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.568-571
    • /
    • 2004
  • This paper presents an efficient 5-axis roughing method for centrifugal impeller. The efficient roughing is minimization of cutting time through minimizing tool tilting & rotating motions. Roughing tool path plan consists of the three steps. First, machining areas are divided into sub cutting regions using ruling lines. The biggest tool diameter is, then, determined for each region. Finally, tool paths are generated after fixing the tilting and rotating axis of 5-axis machine. Experimental results showed that the proposed roughing plan considering the divided machining regions is more efficient than the conventional methods.

  • PDF

Development of 5-axis $CO_2$ Laser Cutting Machine and CAM (5축 CO2 레이저 컷팅 머신 및 CAM 시스템 개발)

  • Kang Jae-Gwan;Yeom S.B.;Kang B.S.;Lee H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.245-246
    • /
    • 2006
  • For developing 5-axis laser cutting systems, many problems such as rotating of laser head or table, 5-axis tool path generation and collision avoidance between laser head and product should be solved. In this paper, a five-axis laser cutting machine with table swivel and rotary type configuration is developed. The five axes (X,Y,Z,A,B) are controlled and interfaced to PC via MMC board. Two kinds of CAM S/W such as commercial 5-axis CAM S/W(Euclid) and UG-API are engaged to generate NC code for the developed 5-axis laser cutting machine.

  • PDF

Gouging-free Tool-path Generation for Manufacturing Model Propellers (모형 프로펠러 제작을 위한 과절삭이 없는 공구 경로 생성)

  • Kim, Yoo-Chul;Kim, Tae-Wan;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.198-209
    • /
    • 2007
  • In this paper, we present the gouging and collision-free tool-path generation for manufacturing model propellers using the 5-axis NC machine. Because it takes much time to generate tool-paths when we use general purpose CAD/CAM systems, a specific system would be necessary for marine propellers. Overall manufacturing process is composed of two steps: roughcut and finishcut steps. The roughcut is conducted using only 3-axis for efficient machining and the finishcut is done using 5-axis for avoiding collision. The tool-path that might happen to gouging is searched and the tool position is also decided for avoiding interference between the tool and the propeller blades. The present algorithm is applied extensively to the surface piercing propellers. Some results are demonstrated for its validation.

Tool-trajectory Error at the Singular Area of Five-axis Machining - Part I: Trajectory Error Modeling - (5축 가공의 특이영역에서 공구궤적 오차 - Part I: 궤적오차 모델링 -)

  • So, Bum-Sik;Jung, Yoong-Ho;Yun, Jae-Deuk
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2009
  • This paper proposes an analytical method of evaluating the maximum error by modeling the exact tool path for the tool traverse singular region in five-axis machining. It is known that the NC data from the inverse kinematics transformation of 5-axis machining can generate singular positions where incoherent movements of the rotary axes can appear. These lead to unexpected errors and abrupt operations, resulting in scoring on the machined surface. To resolve this problem, previous methods have calculated several tool positions during a singular operation, using inverse kinematics equations to predict tool trajectory and approximate the maximum error. This type of numerical approach, configuring the tool trajectory, requires much computation time to obtain a sufficient number of tool positions in a region. We have derived an analytical equation for the tool trajectory in a singular area by modeling the tool operation into a linear and a nonlinear part that is a general form of the tool trajectory in the singular area and that is suitable for all types of five-axis machine tools. In addition, we have evaluated the maximum tool-path error exactly, using our analytical model. Our algorithm can be used to modify NC data, making the operation smoother and bringing any errors to within tolerance.

Development of a CAD/CAM System for Marine Propeller (프로펠러 가공 전용 CAD/CAM 시스템 개발)

  • Jeon, Yong-Tae;Yun, Jae-Ung;Park, Se-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.53-61
    • /
    • 2000
  • The manufacture of a marine propeller typically requires long lead time to generate 5-axis tool path. Hence it may take several weeks to manufacture a satisfactory propeller with a general purpose CAD/CAM system. In this research a dedicated 5-axis CAD/CAM system for machining marine propellers has been developed, The system employs various methods to enhance the productivity : interference-free tool path generation employing check vectors and optimum cutter size determinants. In addition an iterative NURBS modeling technique is used to improve the accuracy of the modeled surface and effective cutting conditions are determined and recommended empirically to increase the productivity. The proposed CAD/CAM system has been implemented with C++ and OpenGL graphic library on the Windows system. The system validation and sample results are also given and discussed.

  • PDF

The Control Technology of Cutter Path and Cutter Posture for 5-axis Control Machining (5축가공을 위한 공구경로 및 자세 제어 기술)

  • Hwang, Jong-Dae;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • 5-axis NC machining has a good advantage of the accessibility of tool motion by adding two rotary axes. It offers numerous advantages such as expanding machining fields in parts of turbo machineries like impeller, propeller, turbine blade and rotor, reasonable tool employment and great reduction of the set-up process. However, as adding two rotary axes, it is difficult to choose suitable machining conditions in terms of cutter path and cutter posture at a cutter contact point. Therefore in this paper, it is proposed to decide suitable machining condition through an experimental method such as adopting various cutter paths, cutter postures types. Also, in order to increase the efficiency of 5-axis machining, it is necessary to minimize the cutter posture changes and create a continuous cutter path while avoiding interference. This study, by using an MC-space algorithm for interference avoidance and an MB-spline algorithm for continuous control, is intended to create a 5-axis machining cutter path with excellent surface quality and economic feasibility. finally, this study will verify the effectiveness of the suggested method through verification processing.

Optimal Tool Length Computation of NC Data for 5-axis Ball-ended Milling (5축 볼엔드밀 가공 NC 데이터의 최적 공구 길이 계산)

  • Cho, Hyeon-Uk;Park, Jung-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.354-361
    • /
    • 2010
  • The paper presents an efficient computation of optimal tool length for 5-axis mold & die machining. The implemented procedure processes an NC file as an initial input, where the NC data is generated by another commercial CAM system. A commercial CAM system generates 5-axis machining NC data which, in its own way, is optimal based on pre-defined machining condition such as tool-path pattern, tool-axis control via inclination angles, etc. The proper tool-length should also be provided. The tool-length should be as small as possible in order to enhance machinability as well as surface finish. A feasible tool-length at each NC block can be obtained by checking interference between workpiece and tool components, usually when the tool-axis is not modified at this stage for most CAM systems. Then the minimum feasible tool-length for an NC file consisting of N blocks is the maximum of N tool-length values. However, it can be noted that slight modification of tool-axis at each block may reduce the minimum feasible tool-length in mold & die machining. This approach can effectively be applied in machining feature regions such as steep wall or deep cavity. It has been implemented and is used at a molding die manufacturing company in Korea.

A Study on Five-Axis Roughing of Impeller with Ruled Surface (룰드 곡면으로 된 임펠러의 5축 황삭 가공에 관한 연구)

  • Jang, Dong-Kyu;Lim, Ki-Nam;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.60-68
    • /
    • 2007
  • This paper presents an efficient 5-axis roughing method for centrifugal impeller. The efficient roughing is minimization of cutting time through minimizing tool tilting and rotating motions. To minimized cutting time, machining area is divided into sub-cutting regions using control points on hub curves and shroud curves of blade used to design and analyze centrifugal impeller. For sub-cutting regions, diameters of cutting tools are determined as big as possible. Then, tool paths are generated with the tilting axis and rotating axis of 5-axis machine limited and fixed, which can give more efficient machining speed and machining stability than the conventional methods. Experimental results show that the proposed method is more efficient than the conventional methods to mill with the only one cutting tool without dividing area and the previous methods to mill with simultaneous 5-axis processing with dividing area.

5-axis Machining of Impellers using Geometric Shape Information and a Vector Net (기하학적 형상정보와 벡터망을 이용한 임펠러의 5축가공)

  • Hwang, Jong-Dae;Yun, Il-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • Two rotational motions of the 5-axis machine tool maximize the degree of freedom of the tool axis vector, which improves tool accessibility; however, this lowers feed speed and rigidity, which impairs machining stability. In addition, cutting efficiency is lowered when compared with a flat end mill because typically, the ball-end mill is used when machining by rotational motion. This study increased cutting efficiency by using a corner radius flat end mill during impeller roughing. Furthermore, we proposed a fixed controlled machining of the rotary motion using geometric shape information to improve the feed speed and machining stability. Finally, we proposed a finishing tool path generation method using a vector net to increase the convenience and practicality of tool path generation. To verify its effectiveness, we compared the machining time, shape accuracy, and surface quality of the proposed method and an existing dedicated module.

Five-axis CL Data Generation by Considering Tool Swept Surface Model in Face Milling of Sculptured Surface (공구이동궤적 모델을 이용한 5축 페이스밀링 가공데이터 생성)

  • 이정근;박정환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • It is well known that the five-axis machining has advantages of tool accessibility and machined surface quality when compared with conventional three-axis machining. Traditional researches on the five-axis tool-path generation have addressed interferences such as cutter gouging, collision, machine kinematics and optimization of a CL(cutter location) or a cutter position. In the paper it is presented that optimal CL data for a face-milling cutter moving on a tool-path are obtained by incorporating TSS(tool swept surface) model. The TSS model from current CL position to the next CL position is constructed based on machine kinematics as well as cutter geometry, with which the deviation from the design surface can be computed. Then the next CC(cutter-contact) point should be adjusted such that the deviation conforms to given machining tolerance value. The proposed algorithm was implemented and applied to a marine propeller machining, which proved effective from a quantitative point of view. In addition, the algorithm using the TSS can also be applied to avoid cutter convex interferences in general three-axis NC machining.