• Title/Summary/Keyword: 5 V Spinel

Search Result 80, Processing Time 0.027 seconds

$V_2O_5$가 코팅된 Li-Mn spinel의 합성과 전기화학적 특성

  • Kim, Jun-Il;Lee, Jae-Won;No, Gwang-Cheol;Park, Seon-Min;Seon, Yang-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.268-268
    • /
    • 2009
  • Li-Mn spinel의 고온수영 특성을 향상을 위해 졸-겔법으로 $V_2O_5$를 Li-Mn spinel 표면에 코팅을 하였다. $V_2O_5$의 코팅양은 1, 3, 5wt%로 조절하여 코팅 양에 따른 특성변화를 조사하였다. XRD분석결과 $V_2O_5$가 코팅된 Li-Mn spinel을 $400^{\circ}C$에서 열처리시 $Mn(VO_3)_2$가 생성되는 것을 확인하였다. 충방전 테스트결과, 고온에서 $V_2O_5$를 코팅한 Li-Mn spinel이 우수한 수명을 나타냈다. 하지만 코팅량이 1wt%까지는 용량의 변화가 거의 없었고, 5wt% 코팅시 현격히 용량이 감소하였다.

  • PDF

A study on the Spinel phase cathode materials with high capacity for lithium secondary batteries (리튬 2차 전지용 고용량 스피넬계 양극물질 연구)

  • Hong, Ki-Joo;Sun, Yang-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.106-108
    • /
    • 2001
  • As 3V cathode material, a new doping spinel material, LiMn1.6Se0.4O4 powder with a phase-pure polycrystalline was synthesized by a sol-gel method. In spite of Jahn-teller distortion in 3V region($2.4{\sim}3.5V$), the LiMn1.6Se0.4O4 electrode shows no capacity loss. The material in the 3V region initially delivers a discharge capacity of 100mAh/g which increase with cycling to reach 105mAh/g after 90cycles. And 5V cathode material LiNi0.5-xMxMn1.5O4(M=Cr, V, Fe) compounds have been synthesized by sol-gel method. a series of electroactive spinel compounds, LiNi0.5-xMxMn1.5O4(M=Cr, V, Fe) has been studied by crystallographic and electrochemical methods. The material presents only one plateau at around 4.5 V vs. Li/Li+ with a large discharge capacity of 152mAh/g and fairly good cyclability.

  • PDF

Negative Resistance Characteristics of $Fe_{1+x}V_{2-x}O_4$ Spinels ($Fe_{1+x}V_{2-x}O_4$ Spinel의 부성저항특성)

  • Lee, Gil-Sik;Son, Byeong-Gi;Lee, Jong-Deok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.3
    • /
    • pp.25-31
    • /
    • 1977
  • Fe V spinels were prepared by sintering the well-ground stoichiometric mixtures of Fe O and V O at 1,10$0^{\circ}C$ under H -CO atmosphere. The activation energy for electrical conduction decreases with increasing amount of iron. The tendency of activation energy depending on the amount of iron contained clarifies that the electrical condction of the spinel is mainly due to electron hopping between Fe and Fe ions at B sites. In the experiment for negative resistance characteristics, the threshold voltage (Vth) for the samples is related to ambient temperature, thickness and raising rate of applied voltage. Vth decreases as temperature increases while Vth increases linearly with thickness and Vth increases linearly with the raising rate of applied voltage in semi-logarithmic scale. These results lead to a conclusion that current paths mainly formed by thermal breakdown are ascribed to the negative resistance phenomena. Applying this property, these vanadium iron spinels may be used for switching elements.

  • PDF

Study of the Electrochemical Properties of Li4Ti5O12 Doped with Ba and Sr Anodes for Lithium-Ion Secondary Batteries

  • Choi, Byung-Hyun;Lee, Dae-Jin;Ji, Mi-Jung;Kwon, Young-Jin;Park, Sung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.638-642
    • /
    • 2010
  • The spinel material $Li_4Ti_5O_{12}$ has attracted considerable attention as an anode electrode material for many battery applications owing to its light weight and high energy density. However, the real capacity of $Li_4Ti_5O_{12}$ powder as determined by the solid-state method is lower than the ideal capacity. In this study, we investigated the effect of the dopants in M-doped spinel $Ba_xLi_{4-2x}Ti_5O_{12}$(x=0.005, 0.05, 0.1) powders prepared by the solid-state reaction method and used as the anode material in lithiumion batteries. The results confirmed the effect of the Ba and Sr dopants on the powder properties of the spinel $Li_4Ti_5O_{12}$, which exhibited a pure spinel structure without any secondary phase in its XRD pattern. Moreover, the electrochemical properties of the spinel M-LTO materials were investigated using a half cell. The electrochemical data show that cells with anodes made of undoped $Li_4Ti_5O_{12}$ and Ba- and Sr-doped $Li_4Ti_5O_{12}$ have discharge capacities of 97, 130, and 112 mAh/g, respectively, at the first cycle. Moreover, the Ba- and Sr-doped spinel $Li_4Ti_5O_{12}$ demonstrated good properties in the mid-voltage range at 1.55 V, showing stable cyclic voltammogram properties which surpassed those of the same material without Ba or Sr at 1 C after 100 cycles.

Evaluations of Mn-Ni-Co type thermistor thin film for thermal infrared sensing element (열형 적외선 센싱소자용 Mn-Ni-Co계 써미스터 박막 특성 평가)

  • 전민석;최덕균
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.297-303
    • /
    • 2003
  • Mn-Ni-Co type thin films were prepared at various conditions by a rf magnetron sputtering system. At the condition. or substrate temperature of $300^{\circ}C$ and $Ar/O_2$= 10/0, a cubic spinel phase was obtained. When oxygen was included in process gas, a cubic spinel phase was not formed even after the thermal annealing at $900^{\circ}C$. The thermistor thin film had no other elements except Mn, Ni and Co. The infrared reflection spectra of the thermistor thin films showed that the films had somewhat high reflectance for incoming infrared ray with some angle. The etch rate of the thermistor thin films was about 63nm/min at a condition of DI water : $HNO_3$: HCl = 60 : 30 : 10 vol%. The B constant and temperature coefficient of resistance of the thermistor thin films were 3500 K and -3.95 %/K, respectively. The voltage responsivity of the thermistor thin film infrared sensor was 108.5 V/W and its noise equivalent power and specific detectivity were $5.1\times 10^{-7}$ W/$Hz^{-1/2}$ and $0.2\times 10^6$cm $Hz^{1/2}$/W, respectively.

The Electrical Characteristics of Varistor. (바리스터의 전기적 특성)

  • Hong, Kyung-Jin;Jang, Dong-Hwan;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.52-56
    • /
    • 2001
  • The Breakdown electric field of ZnO semiconductor devices in voltage-current characteristics was increased by increasing of additive materials. The specimen that has not additive materials was not formed spinel structure. The critical voltage that has not spinel structure was 235[V]. When the additive materials has 0.5 and 2[mol%], the Breakdown electric field was 840 and 758[V] in each additive materials. The Breakdown electric field of varistors as a factor of voltage and current was increased by addition of oxide antimony. The varistors that has oxide antimony was linearly increased in low electric field.

  • PDF

Variation of Li Diffusion Coefficient during Delithiation of Spinel LiNi0.5Mn1.5O4

  • Rahim, Ahmad Syahmi Abdul;Kufian, Mohd Zieauddin;Arof, Abdul Kariem Mohd;Osman, Zurina
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.128-137
    • /
    • 2022
  • For this study, the sol gel method was used to synthesize the spinel LiNi0.5Mn1.5O4 (LNMO) electrode material. Structural, morphological, electrochemical, and kinetic aspects of the LNMO have been characterized. The synthesized LNMO was indexed with the Fd3m cubic space group. The excellent capacity retention indicates that the spinel framework of LNMO has the ability to withstand high rate charge-discharge throughout long cycle tests. The Li diffusion coefficient (DLi) changes non-monotonically across three orders of magnitude, from 10-9 to 10-12 cm2 s-1 determined from GITT method. The variation of DLi seemed to be related to three oxidation reactions that happened throughout the charging process. A small dip in DLi at the beginning stage of Li deintercalation is correlated with the oxidation of Mn3+ to Mn4+. While two pronounced DLi minima at 4.7 V and 4.75 V are due to the oxidation of Ni2+/Ni3+ and Ni3+/Ni4+ respectively. The depletion of DLi at the high voltage region is attributed to the occurrence of two successive phase transformation phenomena.

Fabrication and Characterization of ${LiMn_2}{O_4}$ Cathode for Lithium Rechargeable Battery by R.F.Magnetron Sputtering (R.F. Magnetron Sputtering을 이용한 리튬이차전지 정극용 ${LiMn_2}{O_4}$의 제조 및 특성)

  • 우태욱;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.552-558
    • /
    • 2000
  • LiMn2O4 thin fiolm cathodes for Li-ion secondary battery were fabricated by r.f. magnetron sputtering technique. As-deposited films were amorphous. A spinel structure could not be obtained LiMn2O4 films by in-situ thermal annealing. After post thermal annealing over $700^{\circ}C$ in oxygen atmosphere, LiMn2O4 films prepared above 100 W r.f. power could be crystallized into a spinel structure. The electrochemical property of the LiMn2O4 film cathodes was tested in a Li/1 M LiClO4 in PC/LiMn2O4 cell. From cyclic voltammetry at scan rate of 2mV/sec of 2.5~4.5V, LiMn2O4 electrode prepared by post annealing at 75$0^{\circ}C$ showed good initial capacity. LiMn2O4 electrode prepared by post annealing at 80$0^{\circ}C$ showed the best crycling performance.

  • PDF

Sintering and Electrical Properties of Ni-doped ZnO-Bi2O3-Sb2O3 (Ni를 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.941-948
    • /
    • 2009
  • The present study aims at the examination of the effects of 1 mol% NiO addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by density, XRD, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Ni-doped ZBS (ZBSN) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered in ZBS (Sb/Bi=1.0) by Ni doping. The reproduction of pyrochlore was suppressed by the addition of Ni in ZBS. Between two polymorphs of $Zn_7Sb_2O_{12}$ spinel ($\alpha$ and $\beta$), microstructure of ZBSN (Sb/Bi=0.5) composed of a-spinel was more homogeneous than $Sb/Bi{\geq}1.0$ composed of $\beta$-spinel phase. In ZBSN, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha\;=\;6{\sim}11$) and independent on microstructure according to Sb/Bi ratio. Doping of Ni to ZBS seemed to form ${V_0}^{\cdot}$ (0.33 eV) as dominant bulk defect. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature.

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.