• Title/Summary/Keyword: 5% $H_2$ gas

Search Result 2,157, Processing Time 0.031 seconds

H2 gas sensing characteristics of SnO2 nano-powdersprepared by homogeneous precipitation method (균일침전법을 이용한 SnO2 나노분말의 H2 감지 특성)

  • Kim, Yeong-Bok;Lee, Woon-Young;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.361-368
    • /
    • 2008
  • Nanosized $SnO_2$ particles were synthesized by homogeneous precipitation method using tin chloride ($SnCl_4{\cdot}5H_{2}O$) and urea ($CO(NH_2)_2$). The powders were heated at $500^{\circ}C$ and $600^{\circ}C$ for 2h. The crystal structure, microstructure, thermal behavior, specific surface area were analyzed using XRD, FE-SEM, TGA and BET, respectively. The initial resistance and the $H_2$ sensing properties were measured as a function of ${Sb_2}{O_3}$ and Pd doping concentrations. The resistance was decreased with the addition of ${Sb_2}{O_3}$ and the sensitivity for $H_2$ gas was increased with the addition of Pd. Thus, the optimum $H_2$ gas sensing property was obtained in the 0.25.mol% ${Sb_2}{O_3}$ and 1.w% added $SnO_2$ powders.

The Doping and Plasma Effects on Gas Sensing Properties of α-Fe2O3 Thin Film

  • Choi, J.Y.;Jang, G.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.189-193
    • /
    • 2004
  • Pure and Sn or Pt doped $\alpha-Fe_2O_3$ thin films were prepared on $Al_2O_3$ substrates by RF-magnetron sputtering method and the sensitivities were compared. It was found that pure $\alpha-Fe_2O_3$ thin films did not exhibit much selectivity in CO and $i-C_4H_{10}$ gases while it showed the high sensitivity in proportion to the gas concentration of $C_2H_{5}OH$ gas. Pt-doped $\alpha-Fe_2O_3$ showed to be alike sensing properties as pure $\alpha-Fe_2O_3$ thin film in $C_2H_{5}OH$ gas. However, Sn-doped $\alpha-Fe_2O_3$ thin films exhibited the excellent sensitivity and selectivity in Hz gas. After microstructure modification by plasma etching on pure $\alpha-Fe_2O_3$ thin films, the gas sensing characteristics were dramatically changed.

Electrical and optical properties of AZO films sputtered in $Ar:H_2$ gas RF magnetron sputtering system

  • Hwang, Seung-Taek;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.192-192
    • /
    • 2009
  • AZO films were prepared by $Ar:H_2$ gas RF magnetron sputtering system with a AZO (2wt% $Al_2O_3$) ceramic target at a low temperature of $100^{\circ}C$. To investigate the influence of $H_2$ flow ratio on the properties of AZO films, $H_2$ flow ratio was changed from 0.5% to 2%. As a result, the AZO films deposited with 1% $H_2$ addition showed electrical properties with a resistivity of $5.06{\times}10^{-3}{\Omega}cm$. The spectrophotometer-measurements showed the transmittance of 86.5% was obtained by the film deposited with $H_2$ flow ratio of 1% in the range of 940nm for GaAs/GaAlAs LED.

  • PDF

Electrical Conductivity Modulation in TaNx Films Grown by Plasma Enhanced Atomic Layer Deposition (플라즈마 강화 원자층 증착법에 의한 TaNx 박막의 전기 전도도 조절)

  • Ryu, Sung Yeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.241-246
    • /
    • 2018
  • $TaN_x$ film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using $NH_3$ as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using $N_2+H_2$ mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown $TaN_x$ film with $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. For a comparison, reactive sputter-grown $TaN_x$ film with $N_2$ is also studied. The results reveal that ALD-grown $TaN_x$ films with $NH_3$ and $H_2$ include a metallic Ta-N bond, which results in the film's higher conductivity. Meanwhile, ALD-grown $TaN_x$ film with a $N_2+H_2$ mixed gas or sputtergrown $TaN_x$ film with $N_2$ gas mainly contains a semiconducting $Ta_3N_5$ bond. Such a different portion of Ta-N and $Ta_3N_5$ bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.

Silence of LncRNA GAS5 Protects Cardiomyocytes H9c2 against Hypoxic Injury via Sponging miR-142-5p

  • Du, Jian;Yang, Si-Tong;Liu, Jia;Zhang, Ke-Xin;Leng, Ji-Yan
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.397-405
    • /
    • 2019
  • The regulatory role of long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in both cancerous and noncancerous cells have been widely reported. This study aimed to evaluate the role of lncRNA GAS5 in heart failure caused by myocardial infarction. We reported that silence of lncRNA GAS5 attenuated hypoxia-triggered cell death, as cell viability was increased and apoptosis rate was decreased. This phenomenon was coupled with the down-regulated expression of p53, Bax and cleaved caspase-3, as well as the up-regulated expression of CyclinD1, CDK4 and Bcl-2. At the meantime, the expression of four heart failure-related miR-NAs was altered when lncRNA GAS5 was silenced (miR-21 and miR-142-5p were up-regulated; miR-30b and miR-93 were down-regulated). RNA immunoprecipitation assay results showed that lncRNA GAS5 worked as a molecular sponge for miR-142-5p. More interestingly, the protective actions of lncRNA GAS5 silence on hypoxia-stimulated cells were attenuated by miR-142-5p suppression. Besides, TP53INP1 was a target gene for miR-142-5p. Silence of lncRNA GAS5 promoted the activation of PI3K/AKT and MEK/ERK signaling pathways in a miR-142-5p-dependent manner. Collectively, this study demonstrated that silence of lncRNA GAS5 protected H9c2 cells against hypoxia-induced injury possibly via sponging miR-142-5p, functionally releasing TP53INP1 mRNA transcripts that are normally targeted by miR-142-5p.

A Study on Improvement of the Physical Properties of 4 Component Working Fluid in Gas Fired Absorption Chillers (가스흡수식 냉방기용 4성분계 작동매체의 물성 향상 연구)

  • Baek, Young-Soon;Oh, Young-Sam;Lee, Yong-Won;Park, Dal-Ryung;Koo, Ki-Kap
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.400-406
    • /
    • 1999
  • In an effort to obtain high efficiency in gas fired absorption chillers, a new working fluid has been developed with thc addition of the component of $LiNO_3$, LiCl and LiI to the conventional solution of $LiBr-H_2O$. The solubility and vapor pressure of the 4 component working fluid developed in this work were measured and compared to the results of $LiBr-H_2O$ solution. It was observed that there exists an optimal mole ratio of the inorganic salts in terms of solubility. The mole ratio of LiBr, $LiNO_3$ and LiCl was found to be around 5:1:1~2 in the $LiBr-LiNO_3-LiCl-H_2O$ mixture, and in the case of $LiBr-LiO_3-Lil-H_2O$ and $LiBr-Lil-LiCl-H_2O$ mixtures, the mole ratio of LiBr, $LiNO_3$ and Lil/ LiBr, LiI and LiCl were found to be around 5:1:1 and 5:1:0.5~1 respectively. The vapor pressure of the 4 component working fluid of the optimal mole ratio was increascd with adding the component of $LiNO_3$, LiCl and LiI except for $LiBr-LiNO_3-LiCl-H_2O$ mixture. The absorption capacity of $LiBr-LiNO_3-LiCl-H_2O$ mixture was obtained higher than that of $LiBr-H_2O$ mixture.

  • PDF

Gas Sensing Characteristics of Sb-doped SnO2 Nanofibers

  • Choi, Joong-Ki;Hwang, In-Sung;Kim, Sun-Jung;Park, Joon-Shik;Park, Soon-Sup;Dong, Ki-Young;Ju, Byeong-Kwon;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Undoped and Sb-doped $SnO_2$ nanofibers were prepared by electrospinning and their responses to $H_2$, CO, $CH_4$, $C_3H_8$, and $C_2H_5OH$ were measured. In the undoped $SnO_2$ nanofibers, the gas response ($R_a/R_g$, $R_a$: resistance in air, $R_g$: resistance in gas) to 100 ppm $C_2H_5OH$ was very high(33.9), while that to the other gases ranged from 1.6 to 2.2. By doping with 2.65 wt% Sb, the response to 100 ppm $C_2H_5OH$ was decreased to 4.5, whereas the response to $H_2$ was increased to 3.0. This demonstrates the possibility of detecting a high $H_2$ concentration with minimum interference from $C_2H_5OH$ and the potential to control the gas selectivity by Sb doping.

Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier (가스화기에서 WGS 반응을 통한 합성가스의 수소 전환)

  • Lee, See Hoon;Kim, Jung Nam;Eom, Won Hyun;Baek, Il Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

Ortho-to-Para Ratio Studies of Shocked $H_2$ Gas Observed from Two Supernova Remnants IC 443 and HB 21

  • Shinn, Jong-Ho;Lee, Ho-Gyu;Moon, Dae-Sik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2013
  • We present the near-infrared spectra (2.5-5.0 um) of shocked $H_2$ gas, observed with the Infrared Camera onboard the satellite AKARI. Two supernova remnants, IC 443 and HB 21, were observed. IC 443 shows a hint of non-equilibrium ortho-to-para ratio (OPR): 2.4 (-0.2, +0.3). HB 21 also shows an indication of a potential non-equilibrium OPR: 1.8-2.0. These non-equilibrium OPRs are first reported for shocked $H_2$ gas at E(v,J) > 7000 K, as far as we are aware. We concluded that the non-equilibrium OPR probably originates from dissociative J-shocks, considering several factors such as the shock combination requirement, the line ratios, and the possibility that $H_2$ gas can form on grains with a non-equilibrium OPR. The difference in the collision energy of H atoms on grain surfaces would give rise to the observed difference between the OPRs of IC 443 and HB 21, if dissociative J-shocks are responsible for the $H_2$ emission. Our study suggests that shocked-then-cooled $H_2$ gas may play as a heat reservoir with the non-equilibrium OPR.

  • PDF

A Study on the Water Gas Shift Reaction of RPF Syngas (RPF(Refuse plastic fuel) 합성가스의 수성가스 전환 반응 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.12-18
    • /
    • 2021
  • The water-gas shift reaction is the subsequent step using steam for hydrogen enrichment and H2/CO ratio-controlled syngas from gasification. In this study, a water-gas shift reaction was performed using syngas from an RPF gasification system. The water-gas shift using a catalyst was performed in a laboratory-scale tube reactor with a high temperature shift (HTS) and a low temperature shift (LTS). The effects of the reaction temperature, steam/carbon ratio, and flow rate on H2 production and CO conversion were investigated. The operating temperature was 250-400℃ for the HTS system and 190-220℃ for the LTS system. Steam/carbon ratios were between 1.5 and 3.5, and the composition of reactant was CO : 40 vol%, H2 : 25 vol%, and CO2 : 25 vol%. The CO conversion and H2 production increased as the reaction temperature and steam/carbon ratio increased. The CO conversion and H2 production decreased as the flow rate increased due to reduced retention time in the catalyst bed.