참고문헌
- N. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors”, Catal. Surv. Asia, vol. 7, pp. 63-75, 2003. https://doi.org/10.1023/A:1023436725457
- N. Yamazoe, “New approaches for improving semiconductor gas sensors”, Sens. Actuators, B, vol. 5, pp. 7-19, 1991. https://doi.org/10.1016/0925-4005(91)80213-4
- G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches”, Sens. Actuators, B, vol. 107, pp. 209-232, 2005. https://doi.org/10.1016/j.snb.2004.10.006
- D. E. Williams and K. F. E. Pratt, “Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides”, Sens. Actuators, B, vol. 70, pp. 214-221, 2000. https://doi.org/10.1016/S0925-4005(00)00572-4
- A. Greiner and J. H. Wendorff, “Electrospinning : a fascinating method for the preparation of ultrathin fibers”, Angew. Chem. Int. Ed., vol. 46, pp. 5670-5703, 2007. https://doi.org/10.1002/anie.200604646
- D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel”, Adv. Mater., vol. 16, pp. 1151-1170, 2004. https://doi.org/10.1002/adma.200400719
- D. H. Reneker and I.-S. Chun, “Nanometre diameter fibers of polymer, produced by electrospinning”, Nanotechnology, vol. 7, pp. 216-223, 1996. https://doi.org/10.1088/0957-4484/7/3/009
- W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies”, Nanotechnology, vol. 17, pp. R89-R106, 2006. https://doi.org/10.1088/0957-4484/17/14/R01
-
Y. Zhang, X. He, J. Li, Z. Miao and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun
$SnO_2$ nanofibers”, Sens. Actuators, B, vol. 132, pp. 67-73, 2008. https://doi.org/10.1016/j.snb.2008.01.006 -
I.-D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo and H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun
$TiO_2$ nanofibers”, Nano Lett., vol. 6, pp. 2009-2013, 2006. https://doi.org/10.1021/nl061197h - Z. Zhang, X. Li, C. Wang, L. Wei, Y. Liu, and C. Shao, "ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors", J. Phys. Chem. C, vol. 113, pp. 19397-19403, 2009. https://doi.org/10.1021/jp9070373
-
W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, and C. Wang, “A highly sensitive and fast-responding sensor based on electrospun
$In_{2}O_{3}$ nanofibers”, Sens. Actuators, B, vol. 142, pp. 61-65, 2009. https://doi.org/10.1016/j.snb.2009.07.031 -
G. Wang, Y. Ji, X. Huang, X. Yang, P. Gouma, and M. Dudley, “Fabrication and characterization of polycrystalline
$WO_3$ nanofibers and their application for ammonia sensing”, J. Phys. Chem. B, vol. 110, pp. 23777-23782, 2006. https://doi.org/10.1021/jp0635819 - D. Li, Y. Xia, “Direct fabrication of composite and ceramic hollow nanofibers by electrospinning”, Nano Lett., vol. 4, pp. 933-938, 2004. https://doi.org/10.1021/nl049590f
- D. Li and J. T. McCann, and Y. Xia, “Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces”, Small, vol. 1, pp. 83-86, 2005.
- A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, J. H. Kim, and K. Y. Rajpure, “Structural and optoelectronic properties of antimony incorporated tin oxide thin films”, J. Alloys and Compd., vol. 505, pp. 416-422, 2010. https://doi.org/10.1016/j.jallcom.2010.06.091
-
V. Dusastre and D. E. Williams, “Sb(III) as a surface site for water adsorption on
$Sb(Sb)O_2$ , and its effect on catalytic activity and sensor behavior”, J. Phys. Chem. B, vol. 102, pp. 6732-6737, 1998. https://doi.org/10.1021/jp981391v -
Q. Wan and T. H. Wang, “Single-crystalline Sbdoped
$SnO_2$ nanowires: synthesis and gas sensor application”, Chem. Comm., pp. 3841-3843, 2005. - A. A. Zhukova, M. N. Rumyantseva, A. M. Abakumov, J. Arbiol, L. Calvo, and A. M. Gaskov, “Influence of antimony doping on structure and conductivity of tin oxide whiskers”, Thin Solid Films, vol. 518, pp. 1359-1362, 2009. https://doi.org/10.1016/j.tsf.2009.02.150
- T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, and N. Yamazoe, “Relationshio between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides”, J. Mol. Catal. A: Chem., vol. 155, pp. 193-200, 2000. https://doi.org/10.1016/S1381-1169(99)00334-9
- S.-J. Kim, P.-S. Cho, J.-H. Lee, C.-Y. Kang, J.-S. Kim, and S.-J. Yoon, “Preparation of multicompositional gas sensing films by combinatorial solution deposition”, Ceram. Int., vol. 34, pp. 827-831, 2008. https://doi.org/10.1016/j.ceramint.2007.09.031
-
T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, “Development of
$SnO_2$ -based ethanol gas sensor”, Sens. Actuators, B, vol. 9, pp. 63-69, 1992. https://doi.org/10.1016/0925-4005(92)80195-4 - A. Zima, A. Kock, and T. Maier, “In- and Sb-doped tin oxide nanocrystalline films for selective gas sensing”, Microelectron. Eng., vol. 87, pp. 1467-1470, 2010. https://doi.org/10.1016/j.mee.2009.11.103
-
J.-H. Moon, J.-A. Park, S.-J. Lee, T.-H. Zyung, and I.-D. Kim, “Pd-doped
$TiO_2$ nanofiber networks for gas sensor applications”, Sens. Actuators, B, vol. 149, pp. 301-305, 2010. https://doi.org/10.1016/j.snb.2010.06.033 -
L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, and W. Li, “Improved
$H_2$ sensing properties of Co-doped$SnO_2$ nanofibers”, Sens. Actuators, B, in press, 2010.
피인용 문헌
- The role of catalytic cobalt-modified lanthanum ferrite nano-crystals in selective sensing of carbon monoxide vol.50, pp.2, 2015, https://doi.org/10.1007/s10853-014-8623-3