• Title/Summary/Keyword: 4d transition metal

Search Result 77, Processing Time 0.018 seconds

Atomic Resolution Scanning Transmission Electron Microscopy of Two-Dimensional Layered Transition Metal Dichalcogenides

  • Lu, Ning;Wang, Jinguo;Oviedo, uan Pablo;Lian, Guoda;Kim, Moon Jea
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.225-229
    • /
    • 2015
  • Transition metal dichalcogenides (TMDs) are a class of two-dimensional (2D) materials that have attracted growing interest because of their promising applications. The properties of TMDs strongly depend on the crystalline structure and the number and stacking sequence of layers in their crystals and thin films. Though electrical, mechanical, and magnetic studies of 2D materials are being conducted, there is an evident lack of direct atom-by-atom visualization, limiting insight on these highly exciting material systems. Herein, we present our recent studies on the characterization of 2D layered materials by means of aberration corrected scanning transmission electron microscopy (STEM), in particular via high angle annular dark field (HAADF) imaging. We have identified the atomic arrangements and defects in 2H stacked TMDs, 1T stacked TMDs, distorted 1T stacked TMDs, and vertically integrated heterojunctions of 2D TMDs crystals.

Characterizations of Photo-Oxidative Abilities of Nanostructured TiO2 Powders Prepared with Additions of Various Metal-Chlorides during Homogeneous Precipitation (균일침전시 여러 가지 금속염화물들을 첨가하여 제조된 TiO2 나노 분말들의 광산화 능력 평가)

  • Hwang D. S;Lee N. H;Lee H. G;Kim S. J
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.293-299
    • /
    • 2004
  • Transition metal ions doped $TiO_2$ nanostructured powders were prepared with simply heating aqueous $TiOCl_2$ solutions, contained various metal ions (Ni, Al, Fe, Zr, and Nb) of 1.47 mol% added as metal-chlorides, at $100^{\circ}C$ for 4 hrs by homogeneous precipitation process under suppressing conditions of water vaporization. The characterizations for prepared $TiO_2$ powders were carried out to observe doping of metal ions, their concentrations and microstructures using XRD, UV-VIS (DRS), XPS, SEM, TEM and ICP. Also, photo-oxidative abilities were evaluated by decomposition of 4-chlorophenol (4CP) under ultraviolet light irradiations. No secondary oxide phases were formed in all the $VTiO_2$ powders, showing doping with various transition metal ions. When adding ions ($Ni^{2+}$ or$ Al^{3+ }$ and $Zr^{4+}$ ) having valance states or ionic radii greatly different from those of $Ti^{4+}$ , the $TiO_2$ powders of mixed anatase and rutile phases were formed, whereas in the case of additions of $^Fe{3+ }$ and $Nb^{ 5+}$ as well as no addition of metal ion the powders with pure rutile phase alone were formed. Among the prepared $TiO_2$ powders, Ni$^{2+}$ doped $TiO_2$ powders, containing a small amount of anatase phase, showed excellent photo-oxidative ability in 4CP decomposition because of relative decreases in electron-hole recombination and poisoning of $TiO_2$ surface during the photoreaction.n.

A Series of Transition-metal Coordination Complexes Assembled from 3-Nitrophthalic Acid and Thiabendazole: Synthesis, Structure and Properties

  • Xu, Wen-Jia;Xue, Qi-Jun;Liang, Peng;Zhang, Ling-Yu;Huang, Yan-Feng;Feng, Yu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.218-224
    • /
    • 2014
  • In order to explore new coordination frameworks with novel designed 3-nitrophthalic acid and the same N-donor ancillary ligand, a series of novel coordination complexes, namely, $[Cd_2(3-NPA)_2(TBZ)_2(H_2O)_2]{\cdot}2H_2O$(1), $[Zn_2(3-NPA)_2(TBZ)_2]$(2), $[Zn_2O(3-NPA)(TBZ)(H_2O)]_n$(3), $[Co(3-NPA)(TBZ)(H_2O)]_n$(4) (3-$NPAH_2$ = 3-nitrophthalic acid), have been hydrothermally synthesized through the reaction of 3-nitrophthalic acid with divalent transition-metal salts in the presence of N-donor ancillary coligand (TBZ = thiabendazole). As a result of various coordination modes of the versatile 3-$NPAH_2$ and the coligand TBZ, these complexes exhibit structural diversity. X-ray structure analysis reveals that 1 and 2 are 0D molecular rings, while 3 and 4 are one-dimensional (1D) infinite chain polymers. And the weak O-H${\cdots}$O hydrogen bonds and C-H${\cdots}$O nonclassical hydrogen bonds as well as ${\pi}-{\pi}$ stacking also play important roles in affecting the final structure where complexes 1, 3 and 4 have 3D supramolecular architectures, while complex 2 has a 2D supramolecular network. Also, IR spectra, fluorescence properties and thermal decomposition process of complexes 1-4 were investigated.

Characteristics of Ni/3d Series Transition Metal/γ-Al2O3 Catalysts and their Hydrogen Production Abilities from Butane Steam Reforming

  • Lee, Jun-Su;Choi, Byung-Hyun;Ji, Mi-Jung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3281-3289
    • /
    • 2011
  • The materials composed of the 3d series transition metals are introduced into the hydrocarbon steam-reforming reaction in order to enhance the $H_2$ production and abruptly depress the catalytic deactivation resulting from the strong sintering between the Ni component and the ${\gamma}-Al_2O_3$ support. The conventional impregnation method is used to synthesize the Ni/3d series metal/${\gamma}-Al_2O_3$ materials through the sequentially loading Ni source and the 3d series metal (Ti, V, Cr, Mn, Fe, Co, Cu, and Zn) sources onto the ${\gamma}-Al_2O_3$ support. The Mnloaded material exhibits a significantly higher reforming reactivity than the conventional Ni/${\gamma}-Al_2O_3$ and the other Ni/3d series metal/${\gamma}-Al_2O_3$ materials. Particularly the addition of Mn selectively improves the $H_2$ product selectivity by eliminating the formation of $CH_4$ and CO. The $H_2$ production is maximized at a value of 95% over Ni(0.3)/Mn(0.3)/${\gamma}-Al_2O_4$(1.0) with a butane conversion of 100% above $750^{\circ}C$ for up to 55 h.

Theoretical Study of the Conformation of Cis Carbene-Olefin Transition Matal Complexes (시스 카벤-올레핀 전이금속 착물들의 형태에 대한 이론적 연구)

  • Seong-Kyu Park;Ill-Doo Kim;Joon-Tae Kim;Chang-Jin Choi;Young-Gu Cheun
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.802-811
    • /
    • 1992
  • The conformations of several carbene-olefin-transition metal complexes[$(CO)_4M$-(CHX)olefin] (X: $OCH_3,\;NHCH_3,\;SCH_3$, M: C, Mo, W) have been studied by means of Extend Huckel calculations. In the case of $d^6$ transition metal octahedral complexes, it is shown that the two main factors which determine the optimal conformation are metal-to-ligand back-donation and direct ligand-ligand interaction at the metal, but the ligand-ligand interaction dominates the situation for a metal that is coordinated to $\pi$ acceptor ligands and to $\pi$ donor group on the carbene. The relative amounts of both factors depend strongly on the electronic nature of the ligands at the metal. The greater electron donating ability of nitrogen stabilizes amino-substituted carbene complexes compared with their alkoxyl substituted analogues. This interaction is optimal when the $\pi$ systems of the carbene and olefin are coplanar. The introduction of the $\pi$ donor group on the carbene carbon increases also the importance of the ligand-ligand interaction.

  • PDF

Review on Electronic Correlations and the Metal-Insulator Transition in SrRuO3

  • Pang, Subeen
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.187-202
    • /
    • 2017
  • The classical electron band theory is a powerful tool to describe the electronic structures of solids. However, the band theory and corresponding density functional theory become inappropriate if a system comprises localized electrons in a scenario wherein strong electron correlations cannot be neglected. $SrRuO_3$ is one such system, and the partially localized d-band electrons exhibit some interesting behaviors such as enhanced effective mass, spectral incoherency, and oppression of ferromagnetism and itinerancy. In particular, a Metal-Insulator transition occurs when the thickness of $SrRuO_3$ approaches approximately four unit cells. In the computational studies, irrespective of the inclusion of on-site Hubbard repulsion and Hund's coupling parameters, correctly depicting the correlation effects is difficult. Because the oxygen atoms and the symmetry of octahedra are known to play important roles in the system, scrutinizing both the electronic band structure and the lattice system of $SrRuO_3$ is required to find the origin of the correlated behaviors. Transmission electron microscopy is a promising solution to this problem because of its integrated functionalities, which include atomic-resolution imaging and electron energy loss spectroscopy.

Electronic Structure and Magnetism of (3d, 4d)-Pd Alloyed c(2×2) Monolayers (3d 및 4d 전이금속과 Pd가 c(2×2) 합금을 이룬 단층의 자성에 대한 제일원리 연구)

  • Kim, Dong-Chul;Choi, Chang-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2010
  • We investigated the electronic structure and magnetism of the (3d, 4d)-Pd alloyed c($2{\times}2$) monolayer systems, by use of the FLAPW band method. For comparison, pure 3d- and 4d-transition metal monolayers are also considered. We found that the antiferromagnetic configuration of pure V monolayers is sustained in the V-Pd alloy system, while the Ti-Pd alloy system is changed to antiferromagnetic configuration from the ferromagnetic state in pure Ti monolayer. The 4d TM (Mo, Ru, Rh)-Pd monolayers are found to be stable in ferromagnetic configurations. The magnetic moments of Ru and Rh atoms in Ru-Pd and Rh-Pd systems are almost same with those of pure Ru and Rh monolayers, while the magnetic moment of Mo atom is increased to $2.98\;{\mu}_B$ in Mo-Pd alloyed system from the value of Mo monolayer, $0.02\;{\mu}_B$.