• Title/Summary/Keyword: 4d orbital

Search Result 111, Processing Time 0.024 seconds

Theoretical Study on Antitumor Activity of Palladium(II) and Platinum(II) Complexes with Isoxazole and Its Derivatives (이소옥사졸과 그의 유도체들이 배위된 팔라듐(Ⅱ)과 백금(Ⅱ) 착물의 항암활성에 관한 이론적 연구)

  • Kim, Jung-Sung;Song, Young-Dae
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.369-377
    • /
    • 1998
  • The palladium(II) and platinum(II) complexes(where, $([M(L)_2X_2]$, M=Pd(II), Pt(II); L=isoxazole(isox), 3,5-dimethylisoxazole(3,5-diMeisox), 3-methyl, 5-phenylisoxazole(3-Me, 5-Ph-isox), and 4-amino-3,5-dimethylisoxazole (4-ADI); X=Cl, Br) with isoxazole and its derivatives were investigated on antitumor activity by MM2 and EHMO calculation. Because for all the complexes the ${\sigma}MO$ energy level $(E_{{\sigma}(M-X)})$ between $d_x^{2-}_y^2$ orbital of central metal and px orbital of halogen atom is less than ${\sigma}MO$ energy level $(E_{{\sigma}(M-N)})$ between $d_x^{2-}_y^2$ orbital of central metal and px orbital of N atom, without exception. And judging, from the lower $(E_{\'{o}(m-x)})$ value in trans, the bonding strength was found to be weaker in trans isomer than in cis. For the Pd(II) and Pt(II) complexes which have planar ligands, it was shown that for all the complexes dissociation of X-atom in the Pd(II) complexes is easier than that of X-atom in the Pt(II) complexes in both cis- and trans-complexes. Therefore it suggests that the easier dissociation of $X^-$ ion has some relations with antitumor activity, and a linear equation with correlation coefficient of 0.96 was found between ${\Delta}E_{{\sigma}(N-X)}(E_{{\sigma}(M-N)}-E_{{\sigma}(M-X)})$ and inhibitory activity coefficient, logIA.

  • PDF

Theoretical Studies on the Structure and Aromaticity of 1H-Indene and Mono-sila-1H-Indene (1H-Indene과 Mono-sila-1H-Indene의 구조와 방향족성에 대한 이론적 연구)

  • Ghiasi, Reza;Monnajemi, Majid
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.281-290
    • /
    • 2006
  • The electronic structure and properties of the 1H-indene and mono-sila-1H-indene series have been investigated using basis set of 6-31G(d, p) and hybrid density functional theory. Basic measures of aromatic character derived from structure, molecular orbitals, a variety of magnetic criteria (magnetic isotropic and anisotropic susceptibilities) are considered. Energetic criteria suggest that In(Si7) enjoy conspicuous stabilization. However, by magnetic susceptibility isotropic this system are among the least aromatic of the family: Within their isomer series, In(Si4) is the most aromatic using this criteria. Natural bond orbital (NBO) analysis method was performed for the investigation of the relative stability and the nature of the 8-9 bonds in 1H-indene and mono-sila-1H-indene compounds. The results explained that how the p character of natural atomic hybrid orbital on X8 and X9 (central bond) is increased by the substitution of the C8 and C9 by Si. Actually, the results suggested that in these compounds, the X8-X9 bond lengths are closely controlled by the p character of these hybrid orbitals and also by the nature of C-Si bonds. The magnitude of the molecular stabilization energy associated to delocalization from X8-X9 and to * X8-X9 bond orbital were also quantitatively determined. Molecular orbital (MO) analysis further reveal that all structure has three delocalized MOs and two delocalized MOs and therefore exhibit the aromaticity.

Microwave Orbital Angular Momentum Mode Generation and Multiplexing Using a Waveguide Butler Matrix

  • Lee, Wangjoo;Hong, Ju Yeon;Kang, Min Soo;Kim, Bong Su;Kim, Kwang Seon;Byun, Woo Jin;Song, Myung Sun;Cho, Yong Heui
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.336-344
    • /
    • 2017
  • In this paper, we propose a convenient microwave orbital angular momentum (OAM) mode generation and multiplexing method operating in the 18 GHz frequency band, based on a $2{\times}2$ uniform circular array and a $4{\times}4$ Butler matrix. The three OAM modes -1, 0, and +1 were generated and verified using spatial S-parameter measurements; the measured back-to-back mode isolation was greater than 17 dB in the full 17 GHz to 19 GHz range. However, the radiated OAM beam centers were slightly dislocated and varied with both frequency and the mode index, because of the non-ideal characteristics of the Butler matrix. This resulted in mode isolation degradation and transmission distance limitations.

Toward an Accurate Self-interaction Binding Energy of Magic Cluster TiAu_4

  • Han, Young-Kyu;Kim, Jong-Chan;Jung, Jae-Hoon;Yu, Ung-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.305-308
    • /
    • 2008
  • We performed coupled-cluster calculations to determine the intermolecular interaction energy between two TiAu4 clusters. Our ab initio calculations predict that the binding energy is 2.89 eV, which is somewhat larger than the known binding energy of 2.0 eV for TiH4-TiH4. The intermolecular binding energy is relatively high, despite TiAu4 having all the attributes of a magic cluster. The favorable orbital interaction between occupied Au(6s) and unoccupied Ti(3d) orbitals leads to the strong dimeric interaction for TiAu4-TiAu4.

PERIOD CHANGE OF W UMa TYPE CONTACT BINARY AB And (W UMa형 접촉쌍성 AB And의 주기변화)

  • Jin, Ho;Han, Won-Yong;Kim, Chun-Hwey;Lee, Jae-Woo;Lee, Woo-Baik
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.242-250
    • /
    • 1997
  • The CCD photometric observations of W UMa-type eclipsing binary AB And were made from September 1994 to October 1996. New four primary minimum times were obtained from these observations. The analysis of times of minimum light for AB And confirms other previous studies that the orbital period of AB And have been changing as a form of sinusoidal variation. In this paper, we calculated the new orbital elements with linear and nonlinear quadratic term, and the best fit equation is derived with the assumption that the period variation of AB And changes sinusoidal pattern. From the sinusoidal term of this orbital element, we calculate period variation as 92 years with amplitude of $0.^{d}059$. However this result considering only sinusoidal term, was not satisfied with our recent observations. Thus, by assuming another parabolic period variation with the sinusoidal pattern, we derived the best fit orbital elements. From the quadratic coefficient of this orbital elements, we calculated the secular variation of 0.73 seconds, and from the sinusoidal term, the period variation turned out to be 62.9 years with amplitude of $0.^{d}024$. If we assume only the sinusoidal period variation of AB And, the period has to be decreased within 10 years. However if we consider quadratic term with the sinusoidal period variation of the light elements, the period is expected to be increased. Therefore long-term observations of this binary system are required to confirm this issue.

  • PDF

Determination of Reactivity by MO Theory (XXIII). Substituent Effect on Regioselectivity of Diels-Alder Reactions (分子軌道論에 의한 反應性 決定 (제23보). Diels-Alder 反應의 配向性에 미치는 置換基 效果)

  • Ikchoon Lee;Eun Sook Han;Keun Bae Rhyu
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.7-17
    • /
    • 1982
  • In order to predict substituent and Lewis acid effects on the regiospecificity of the Diels-Alder reaction, and to investigate the competition for the complexation of Lewis acid between diene and dienophile, frontier orbital theory has been applied to thermal and catalyzed Diels-Alder reaction by means of CNDO/2 MO method. It has been found that: (1) Lewis acid coordinated preferentially with diene rather than dienophile when carbonyl oxygen of acetoxy substituted diene had larger negative atomic charges than that of dienophile. (2) Most of the reaction were neutral electron demand type, and hence 4-C, 2-C and quantitative secondary orbital interacion methods were generally in good accord with experiments. (3) Sulfur activated the adjacent terminal carbon atom greatly to increase diene LUMO-dienophile HOMO interaction through vacant-d-orbital participation, and played an important role in controlling regioselectivity of neutral electron demand reaction type.

  • PDF

COMPUTER SIMULATION OF INTRAMOLECULAR HYDROGEN TRANSFER TO CARBONYL OXYGEN BY A MONTE CARLO METHOD: PHOTOREACTIONS VIA REMOTE PROTON TRANSFER IN BENZOYLBENZOATES

  • Hasegawa, Tadashi;Yamazaki, Yuko;Yoshioka, Michikazu
    • Journal of Photoscience
    • /
    • v.4 no.2
    • /
    • pp.61-67
    • /
    • 1997
  • The model based on the idea that the p$_y$-orbital of the carbonyl oxygen is responsible to receiving hydrogen was devised for simulation of intramolecular hydrogen transfer. A Monte Carlo method was applied to free rotation of a molecular chain performed by changing the dihedral angles, and a "hit" was defined as the case when the migrating hydrogen comes within the region defined as the p$_y$-orbital and satisfies all the geometrical requirements for abstraction. A set of parameters was employed for defining the region and the requirements; $\tau$ was defined as the angle formed between O...H vector and its projection on the mean plane of the carbonyl group (- 43$\circ$ < $\tau$ < + 43$\circ$), $\Delta$ as the C=O...H angle (90 -15$\circ$ < $\Delta$ < 90 + 15$\circ$), $\theta$ as the O...H - C angle ( 180 - 80$\circ$< 0 < 180 + 80$\circ$), d as the distance from the center of the lobe of the p$_y$-orbital to hydrogen (0 < d < 1.04 ${\AA}$). The minimum value for the distance between carbonyl oxygen (O$_1$) and the migrating hydrogen (H$_i$) and for that between non-bonded atoms except the pair of O$_1$ and H$_i$ were assumed to be 0.52 ${\AA}$ and 1.54 ${\AA}$, respectively. The apphcation of this model to intramolecular $\beta$-, $\gamma$-, $\delta$-, $\epsilon$-, and $\zeta$-hydrogen abstraction in ketones and $\eta$- and $\theta$- proton transfer in oxoesters gave good results reflecting their photochemical behavior. The model was also used for prediction of photoreactivities of 2-(N,N-dibenzylamino)ethyl 2-, 3- and 4-benzoylbenzoate (1a - c). (1a - c).

  • PDF

A period study of the double eclipsing - spectroscopic binaries V994 Her: Detection of double apsidal motions and a light effect

  • Kim, Chun-Hwey;Lee, Chung-Uk;Park, Jang-Ho;Song, Mi-Hwa
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • V994 Her(ADS 11373 AB, HIP 90483) has been recently known as a quadruple system which consists of double eclipsing and double double-lined spectroscopic binaries (Lee et al. 2008). BV CCD photometric observations of the intricate star system were made during the observing seasons from 2007 to 2008 with the 35cm reflector of the Campus station of the Chungbuk National University Observatory. From the observations a total of 10 times of minimum lights were newly determined. All timings collected, including ours, were intensively analyzed to yield new interesting findings: 1) two eclipsing binaries with the orbital periods of 2.d08326 and 1.d42001 in V994 Her system show possibly apsidal motions with different apsidal periods of 46.y4 and 15.y3, and eccentricities of 0.058 and 0.082, respectively. 2) a light-time effect with a period of 0.y93 may be possible, implying that a third-body be revolving around the binary with the orbital period of 2.d08326.

  • PDF

Study on Electronic Structures and Properties in High $T_c\;YBa_2Cu_O_{7-x}\;and\;YBa_2Cu_4O_8$ Superconductors (고온 초전도체 YBa$_2 Cu_3O_{7-x}$와 YBa$_2Cu_4O_8$의 전자구조와 성질에 관한 연구)

  • Son Man-Shick;Ha Hyun-Shick;Paek U-Hyon;Lee Kee-Hag
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.316-323
    • /
    • 1991
  • We calculated a difference between the YBa$_2Cu _3O_{7-x}$ superconductor (123 system) of critical temperature, 95 K and the YBa$_2Cu_4 O_8$ superconductors (124 system) of critical temperature, 80 K in Y-system superconductors using Extended Huckel Theory (EHT). The valence electron population (VEP), reduced overlap population (ROP) and net charge for the charged cluster models relating to the layer and the chain in 123 and 124 systems were compared. The VEPs of Cu atom in the layer of 123 and 124 systems populated d$_{z^2}$ orbital more than d$_{x^2-y^2}$ orbital, and in the chain of 123 and 124 systems populated d$_{y^2-z^2}$ orbital more than d$_{z^2}$ orbital. The ROP of the Cu(1)-O(1) in the layer of 123 system was larger than the value of the Cu(1)-O(2), but the ROP of the Cu(1)-O(2) in the layer of 124 system was larger than the value of the Cu(1)-O(1). The ROP of Cu(2)-O(4) in the chain of 123 and 124 systems were larger than the value of the Cu(2)-O(3). In 123 system the net charge values of the Cu in the layer was larger than the value of the Cu in the chain. However, in 124 system the net charge value of the Cu in the chain was larger than the value in the layer.

  • PDF

NMR Chemical Shift for 4d$^n$ System (Ⅱ). Calculation of the Pseudo Contact Shift for a 4d$^1$ System in a Strong Crystal Field Environment of Octahedral Symmetry

  • Sang-woon Ahn;Se-Woong Oh;Eui-suh Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.2
    • /
    • pp.64-67
    • /
    • 1983
  • NMR shift arising from the electron orbital angular momentum and the electron spin dipolar-nuclear spin angular momentum interactions has been investigated for a $4d^{1}$ system in a strong crystal field of octahedral symmetry. To examine the NMR shif for a $4d^{1}$ system in a strong crystal field of octahedral symmetry, we derive a general expression for ${\Delta}$B/B using a nonmultipole expansion technique. From this expression all the multipolar terms are determined. For the $4d^{1}$ system in a strong crystal field of octahedral symmetry the exact solution for NMR shift, ${\Delta}$B, is compared with the multipolar results. ${\Delta}$B/B for the $4d^{1}$ system is also compared with that for the $3d^{1}$ system. It is found that the $1/R^{7}$ term contributes dominantly to the NMR shift. However, there is good agreement between the nonmultipole and multipolar results for R-values larger than 0.2 nm for the $4d^{1}$ system but for R-values larger than 0.4 nm for the $3d^{1}$ system.