• Title/Summary/Keyword: 4bar linkage

Search Result 62, Processing Time 0.046 seconds

A study on the toilet lifting seat for the elderly (노약자를 위한 변기 리프팅 시트 연구)

  • Minseo Kim;Hyemin Son;Jinho Cho;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.459-464
    • /
    • 2024
  • The purpose of this study is to design a toilet lifting seat to prevent falls accidents in the elderly while using the toilet. Prior to design, laws and national standards related to restroom use were investigated and the available space for the assistive devices to be installed was determined. In additions, considering the body size and operating range of the elderly, the optimal final position of the toilet seat is set so that users can use it more safely and conveniently without external help. Moreover, in order to provide an effective standing assistance function, a complex 4-bar link structure was applied to enable simultaneous seat elevation and angle adjustment when operating the device, and the appropriate link shape and dimensions were determined using a linkage program and UG NX. FEA analysis using ANSYS Workbench is performed to ensure the robustness of the stretched linkage and the feasibility of the lifting seat is verified through fabrication.

Development of a 5 DOF Manipulator for Weight Handling based on Counterbalance Mechanism (기계식 중력보상 기반의 중량물 취급용 5자유도 로봇 머니퓰레이터의 개발)

  • Song, Seung Woo;Song, Jae Bok
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.242-247
    • /
    • 2016
  • A robot manipulator handling a heavy weight requires high-capacity motors and speed reducers, which increases the cost of a robot and the risk of injury when a human worker is in collaboration with a robot. To cope with this problem, we propose a collaborative manipulator equipped with a counterbalance mechanism which compensates mechanically for a gravitational torque due to the robot mass. The prototype of the manipulator was designed on the basis of a four-bar linkage structure which contains active and passive pitch joints. Experimental performance evaluation shows that the proposed robot works effectively as a collaborative robot.

Development of a Color Stereo Head-Eye System with Vergence (눈동자 운동이 가능한 컬러 스테레오 머리-눈 시스템의 개발)

  • HwangBo, Myung;You, Bum-Jae;Oh, Sang-Rok;Lee, Jong-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2370-2372
    • /
    • 1998
  • Recently we have developed an active stereo head-eye system with vergence, name it KIST HECter(Head-Eye System with Colored Stero Vision), based on the analysis of human's neck and eye motion at visual behavior. Our HECter is a five degree-of-freedom system composed of pan and tilt motion in neck part and independent vergence motion of binocular cameras and commonly shared elevation axis in eye part. And stereo vision Provides two color image, which are processed by powerful each TMS32080 vision board. The shape and size are designed to be almost same as human face. The ability to vergence has significant importance and gives many beneficial merits. On its mechanical implementation we adapt a non-parallelogram 4-bar linkage mechanism since it provides high accuracy in transfering motion and enables compact and flexible design.

  • PDF

Design of Robot Using of Jansen Mechanism (얀센메커니즘을 이용한 로봇 설계)

  • Kim, beong jin;Kim, hyeon min;Lee, hyo jung
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.501-505
    • /
    • 2016
  • In this study, a robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism. Our goal is to finish the given path using given terms. The various programs was used to understand the mechanism in more detail. DISON m.Sketch, EDISON Designer, Theo Jansen Mechanism Optimization Solver. Using these programs, we can design the robot in more dtails and reduce errors and trials. For the design and implementation of a robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

  • PDF

A Study on the off-road self-driving robot drive mechanism (오프로드형 자율주행 로봇 구동 메커니즘에 관한 연구)

  • Jeong, Hye-Won;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.551-554
    • /
    • 2020
  • 본 논문은 주행 로봇의 h/w에 관련된 연구로서, 기존의 험난한 지형을 극복하기 위해 1-자유도 반의 4-bar linkage 구조인 deformation wheel로 로봇 자체 지능을 통해 바퀴 변형을 수행한다. 바퀴변형을 통해 평지뿐만 아니라 비평지 지형도 극복하는 로봇을 제시한다. 또한, 로봇 몸체 중간에 관절로 다이나믹셀을 삽입해 deformation wheel로 극복하지 못하는 장애물을 관절이 로봇 body를 들어 올려줘서 장애물의 키기에 대한 관절의 각도 조절 방법에 대해 제시한다.

Development of Exoskeleton-Type Data Glove for Position/Force Feedback (위치/힘 피드백이 가능한 외골격 구조의 데이터 글로브 개발)

  • Kim, Min-Jeong;Kim, Dae-Gyeong;Park, Han-Gil;Kim, Ui-Kyum;Choi, Byung-June;Choi, Hyouk-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1585-1591
    • /
    • 2011
  • In this paper, we present a new exoskeleton-type data glove that can sense the movement of the human finger and reflect the force to the finger. The data glove is designed on the basis of the skeletal structure of the human hand, and the finger module has 1 degree-of-freedom because it includes three four-bar mechanism joints in series and a wire-coupling mechanism. In addition, the transmission ratio of the finger module is maintained at 1:1.4:1 over the entire movement range, and hence, the module can perform both extension and flexion. In addition, to enable adduction/abduction motion of the human hand, a unique MCP joint is designed by using two universal joints. To validate the feasibility of the data glove, master-slave control experiments based on force-position control between the data glove and the robot hand are conducted.

Optimization of Parallel Lift of a Wheel Loader Through Analysis of Working Characteristics of Links (휠로더의 작업장치 링크 특성 분석을 통한 수평 인양 최적화)

  • Park, Hyun Gyu;Jang, Jin Seok;Yoo, Wan Suk;Kim, Min Seok;Lee, Hee Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.389-395
    • /
    • 2016
  • Wheel loaders are utilized not only on construction sites, but also for general purposes, such as manufacturing and transportation. Therefore, during the basic design stage of this type of working device equipment, the designer should consider specifications as well as working performance. In this research, a characteristic analysis program was developed for use in the basic design stage of construction equipment using multibody dynamics analysis. In addition, through the optimization of its links, improvements to the lifting capability of a Z-bar-linkage-type wheel loader were suggested. Using the developed program and process, it is possible to reduce the time required for the basic design of the working device.

Design of Mobility System for Ground Model of Planetary Exploration Rover

  • Kim, Younkyu;Eom, Wesub;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.413-422
    • /
    • 2012
  • In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL), followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

Development of Under-actuated Robotic Hand Mechanism for Self-adaptive Grip and Caging Grasp (형상적응형 파지와 케이징 파지가 가능한 부족구동 기반 로봇 의수 메커니즘 개발)

  • Sin, Minki;Cho, Jang Ho;Woo, Hyun Soo;Kim, Kiyoung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.484-492
    • /
    • 2022
  • This paper presents a simple and robust under-actuated robotic finger mechanism that enables self-adaptive grip, fingertip pinch, and caging grasp functions. In order to perform daily activities using hands, the fingers should be able to perform adaptive gripping and pinching motion, and the caging grasp function is required to realize natural gripping motions and improve grip reliability. However, general commercial prosthetic hands cannot implement all three functions because they use under-actuation mechanism and simple mechanical structure to achieve light-weight and high robustness characteristic. In this paper, new mechanism is proposed that maintains structural simplicity and implements all the three finger functions with simple one degree-of-freedom control through a combination of a four-bar linkage mechanism and a wire-driven mechanism. The basic structure and operating principle of the proposed finger mechanism were explained, and simulation and experiments using the prototype were conducted to verify the gripping performance of the proposed finger mechanism.

Syntheses and Structures of Two Reduced Open-framework Titanophosphates

  • Zhao, Yongnan;Yu, Jianguo;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.805-810
    • /
    • 2008
  • Using metallic Ti powder as raw materials and 1,2-diaminocyclohexane (DACH) as the trial template, two novel reduced titanophosphate open-structures were hydrothermally isolated by varying the $H_3PO_4/H_2O$ ratio to adjust the pH value. TiPO-1 crystallizes in orthorhombic Pbca space group with cell parameters a = 21.956(3) $\AA$, b = 8.6268(11) $\AA$, c = 7.2883(9) $\AA$, V = 1380.5(3) $\AA^3$, Z = 4. TiPO-2 crystallizes in triclinic space group P$\bar{1}$ with parameters a = 5.1620(10) $\AA$, b = 8.815(2) $\AA$, c = 10.655(3) $\AA$, $\alpha$ = $99.45^{\circ}$, $\beta$ = $102.94^{\circ}$, $\gamma$ = $91.06^{\circ}$, V = 465.34 $\AA^3$. TiPO-1 is constructed by infinite -Ti-O-Ti-O- linkage that is capped by $PO_4$ groups to form a chain structure with protonated DACH molecules occupying the interchain spaces. TiPO-2 represents a rare 3-D reduced titanophosphate with 12-MR channels. The structure of TiPO-2 is a neutral framework with water molecules located in the channels.