• Title/Summary/Keyword: 4F Process

Search Result 1,289, Processing Time 0.034 seconds

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 2. Effect of Photo-oxidation and Adsorption (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 2. 광산화와 흡착의 영향)

  • Cong, Gao-Si;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.201-211
    • /
    • 2011
  • The effects of humic acid (HA), photo-oxidation and adsorption were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for drinking water treatment. UF, photocatalyst, and UV radiation processes were investigated in viewpoints of membrane fouling resistance $(R_f)$, permeate flux (J), and total penneate volume $(V_{\Upsilon})$ at 2 and 4 mg/L of HA respectively. As decreasing HA, $R_f$ decreased dramatically and J increased, and finally $V_{\Upsilon}$ was the highest at 2 mg/L HA. Average treatment efficiencies of turbidity decreased as increasing HA, but treatment efficiency of HA was the highest at 4 mg/L HA. It was because most of HA was removed by membrane and some HA passing through the membrane was adsorbed or photo-oxidized by photocatalyst at low HA, and therefore treated water quality was almost same at 2 and 4 mg/L HA, but feed water quality was higher at 4 mg/L. At effect experiment of photo-oxidation and adsorption, J of UF + $TiO_2$ + UV process was maintained at the highest, and ultimately $(V_{\Upsilon})$ after 180 minutes' operation was the highest. As results of comparing the treatment efficiencies of turbidity and HA, photocatalyst adsorption had more important role than photo-oxidation when HA increased from 2 to 4 mg/L.

Application of the Transtheoretical Model to Obese Adolescents' Exercise Behavior Change Stages (범이론적 모형을 적용한 비만 청소년의 운동행위변화단계 연구)

  • Kim Nam Hee;Kim Young Hae;Kim Jeong Soon;Hwang Sun Kyung;Jun Seong Sook
    • Korean Journal of Health Education and Promotion
    • /
    • v.22 no.1
    • /
    • pp.103-115
    • /
    • 2005
  • The Purpose of this study was to identify the process of change, decisional balance and self-efficacy corresponding to the stages of change in exercise behavior based on the Transtheoretical Model(TTM) in obese adolescents. A random sample of 517 obese adolescents was recruited in Pusan. The data were collected from June 15 to 30, 2004. The research instruments were Stages of Change for Exercise Behavior, Process of Change, Decisional Balance, and Self-Efficacy. The data were analyzed by descriptive statistics and ANOVA using SPSS WIN 10.0 program. The results of this study were as follows 1. The subjects were distributed in each stage of exercise behavior: There were 255 subjects($49.3\%$) in the contemplation stage, 131 subjects($25.3\%$) in the preparation stage, 52 subjects($10.1\%$) in the maintenance stage, 41 subjects($7.9\%$) in the action stage, and 38 subjects($7.4\%$) in the precontemplation stage. 2. Analysis of variance showed that cognitive process (F=13.57, p=.000), behavioral process(F=17.23, p=.000), decisional balance pros(F=11.95, p=.000), and self efficacy(F=12.52, p=.000) were significantly associated with the stages of exercise behavior change, but decisional balance cons(F=2.87, p=.023) was not significantly associated with the stages of exercise behavior change. This study can provide useful information for developing effective exercise behavior program considering obese adolescents' stages of change according t'.t the TTM.

Application of the Transtheoretical Model to Exercise Behavior Change Stages of Women in Nursing College and Factors Affecting the Stages (범이론적 모형을 적용한 간호대 여학생의 운동행위 변화단계와 관련요인)

  • Bae, Phil-Won
    • Journal of Korean Public Health Nursing
    • /
    • v.26 no.1
    • /
    • pp.147-157
    • /
    • 2012
  • Purpose: The purpose of this study was to identify the related factors of change affecting the stages of change for exercise, on the assumption that there are various stages of change in the exercise behavior of women in nursing college. Methods: The subjects were 496 female college students in D city. The research instruments were stages of change for exercise behavior, the process of change, decisional balance, and self-efficacy. The dates were analyzed by descriptive statistics, ANOVA, and stepwise multiple regression using the SPSS 18.0 program. Results: The distribution of the subjects across the stages was: pre-contemplation, 17.7%; contemplation, 58.7%; preparation, 19.0%; action, 2.8%; maintenance, 1.8%. Analysis of variance showed that cognitive process (F=17.26, p<0.01), behavioral process (F=27.05, p<0.01), the pros of decisional-balance (F=7.07, p<0.01), the cons of decision-balance (F=5.82, p<0.01), and self efficacy (F=17.79, p<0.01) were significantly associated with the change of exercise behavior stages. The related factors of change affecting the change of exercise behavior stage were the cons of decision-making, counter conditioning, self re-evaluation, and body mass index, including 28.4% R-square. Conclusion: The transtheoretical model would be applicable to explain the exercise behavior of some women in nursing college. So, this study will be useful information for developing effective exercise behavior programs considering female students' stages of change.

Treatment Characteristics of Paper-mill Wastewater Using Pure Oxygen Activated Sludge Process (순산소 활성오니 공정을 이용한 제지폐수의 처리특성)

  • Kim, Sung Soon;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.27-34
    • /
    • 1999
  • An experimental study on improvement of the paper-mill wastewater treatment using the pure oxygen activated sludge process was conducted. The effects of hydraulic retention time(HRT) and BOD loading on organic removal efficiency were investigated. The BOD removal efficiencies were above 90% under all examined HRTs except for HRT of 3 hours. The increase of HRT from 3 hours to 6 hours, and to 12 hours significantly improved BOD and COD removal efficiencies, respectively. However, additional increase of HRT did not affect organic removal efficiency. F/M ratio change at fixed HRT did not affect organic removal efficiency. However, F/M ratio investigated in this study(0.11~1.98kgBOD/kgMLVSS/day) was 5 times greater in maximum than that of conventional activated sludge process, which implies that pure oxygen activated sludge process can treat wastewater with high organic strength. Under the same HRT, the volumetric BOD loading change cause no effect on organic removal efficiency also.

  • PDF

Tb3+ and Ce3+ Intercalated Laponite Powder: The Influence of Ce3+ Ions on Thermal Stability and Optical Properties of Tb3+ Intercalated Laponite

  • Lee, Han-Na;Kim, You-Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1273-1276
    • /
    • 2011
  • Laponite samples intercalated with $Tb^{3+}$ or $Tb^{3+},Ce^{3+}$ ions were prepared by exchange of Na+ ions in interlayers with $Tb^{3+}$ or $Ce^{3+}$ ions. Strong green and weak blue emissions under vacuum ultraviolet (VUV) excitation (${\lambda}$ = 158 nm) were observed due to the $^5D_4{\rightarrow}^7F_J$ and $^5D_3{\rightarrow}^7F_J$ emission lines, respectively. $Tb^{3+}$ ions in an interlayer of laponite mainly existed in ion pairs or clusters, as evidenced by the concentration-dependent luminescence of the $Tb^{3+}$ ions on the relative intensities of the $^5D_3{\rightarrow}^7F_J$ and the $^5D_4{\rightarrow}^7F_J$ emission lines, due to the action of a cross-relaxation process. The addition of $Ce^{3+}$ ions increased the thermal stability of $Tb^{3+}$ intercalated laponite up to $650^{\circ}C$ and quenched the $^5D_3{\rightarrow}^7F_J$ emission lines, probably by promoting the formation of $Tb^{3+}$ ion pairs at relatively low $Tb^{3+}$ concentrations.

Robust algorithm for estimating voltage stability by the modified method of sensitivity index dP/de of real value on voltage vector (전압벡터의 유효분 감도지표 dP/de 수정법에 의한 견고한 전압안정도 평가에 관한 연구)

  • 송길영;김세영;김용하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • Recently, much attention has been paid to problems which is concerned with voltage instability phenomena and much works on these phenomena have been made. In this paper, by substituting d $P_{k}$ d $e_{k}$ ( $v^{\rarw}$= e +j f) for $P_{k}$ in conventional load flow, direct method for finging the limit of voltage stability is proposed. Here, by using the fact that taylor se- ries expansion in .DELTA. $P_{k}$ and .DELTA. $Q_{k}$ is terminated at the second-order terms, constraint equation (d $P_{k}$ d $e_{k}$ =0) and power flow equations are formulated with new variables .DSLTA. e and .DELTA.f, so partial differentiations for constraint equation are precisely calculated. The fact that iteratively calculated equations are reformulated with new variables .DELTA.e and .DELTA.f means that limit of voltage stability can be traced precisely through recalculation of jacobian matrix at e+.DELTA.e and f+.DELTA.f state. Then, during iterative process divergence may be avoid. Also, as elements of Hessian mat rix are constant, its computations are required only once during iterative process. Results of application of the proposed method to sample systems are presented. (author). 13 refs., 11 figs., 4 tab.

  • PDF

Bio-kinetic and Design Analysis for Box-mill Wastewater Treatment Using Anoxic Activated Sludge Process (무산소 활성오니공정을 이용한 판지공장 폐수처리의 동력학적 해석 및 설계분석)

  • Cho, Yong-Duck;Lee, Sang-Wha;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1090-1097
    • /
    • 2006
  • The anoxic activated sludge process was applied to the treatment of industrial box-mill wastewater, which exhibited the high removal efficiencies of $90{\sim}94%$$ TCOD_{Mn}$ and $58{\sim}81%$ Color. For the design of industrial anoxic activated sludge process, Monod bio-kinetic coefficients of box-mill wastewater were estimated as follows: $K_{max}$(maximum specific substrate removal rate)=0.52 $day^{-1}$, $K_s$(half saturation constant)=314 mg/L, $K_d$(decay coefficient)=0.274 $day^{-1}$, y(microbial yield coefficient)=0.908 mg/mg, and ${\mu}_{max}$(maximum specific growth rate)=0.472 $day^{-1}$. Space loading factors for the design analysis were practically determined as the values of F/M ratio=$0.043{\sim}0.07$ kg-$TCOD_{Mn}$/kg-SS-day, BOD space loading=$0.18{\sim}0.3$ kg-$TCOD_{Mn}/m^3-day$, and ${\theta}_x=6.8{\sim}26.4$ day when considering the relationship of these loading factors with growth dynamics of microorganisms, the F/M ratio that is inversely proportional to ${\theta}_x$ should be equivalent to ${\mu}_{max}$ in units, but exhibited the significant difference between theses two values. Therefore, it is considered that high safety factors are requested in the design of anoxic activated sludge process that is based on Monod bio-kinetics of microorganism.

Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer (CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Park, So-Hyun;Kang, Hak-Su;Senthilkumar, Natarajan;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • We have investigated the effect of strong p-type organic semiconductor $F_4$-TCNQ-doped CuPc hole transport layer on the performance of p-i-n type bulk heterojunction photovoltaic device with ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5 wt%)/CuPc:C60(blending ratio l:l)/C60/BCP/LiF/Al, architecture fabricated via vacuum deposition process, and have evaluated the J-V characteristics, short-circuit current ($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and power conversion efficiency(${\eta}_e$) of the device. By doping $F_4$-TCNQ into CuPc hole transport layer, increased absorption intensity in absorption spectra, uniform dispersion of organic molecules in the layer, surface uniformity of the layer, and enhanced injection currents improved the current photovoltaic device with power conversion efficiency(${\eta}_e$) of 0.16%, which is still low value compared to silicone solar cell indicating that many efforts should be made to improve organic photovoltaic devices.

Nitrogen and Fluorine Co-doped Activated Carbon for Supercapacitors

  • Kim, Juyeon;Chun, Jinyoung;Kim, Sang-Gil;Ahn, Hyojun;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.338-343
    • /
    • 2017
  • Activated carbon has lower electrical conductivity and reliability than other carbonaceous materials because of the oxygen functional groups that form during the activation process. This problem can be overcome by doping the material with heteroatoms to reduce the number of oxygen functional groups. In the present study, N, F co-doped activated carbon (AC-NF) was successfully prepared by a microwave-assisted hydrothermal method, utilizing commercial activated carbon (AC-R) as the precursor and ammonium tetrafluoroborate as the single source for the co-doping of N and F. AC-NF showed improved electrical conductivity ($3.8\;S\;cm^{-1}$) with N and F contents of 0.6 and 0.1 at%, respectively. The introduction of N and F improved the performance of the pertinent supercapacitor: AC-NF exhibited an improved rate capability at current densities of $0.5-50mA\;cm^{-2}$. The rate capability was higher compared to that of raw activated carbon because N and F codoping increased the electrical conductivity of AC-NF. The developed method for the co-doping of N and F using a single source is cost-effective and yields AC-NF with excellent electrochemical properties; thus, it has promising applications in the commercialization of energy storage devices.

The Character of Electron Ionization and Attachment Coefficients in Perfluoropropane(C3F8) Molecular Gas by the Boltzmann Equation (볼츠만 방정식에 의한 C3F8분자가스의 전리 및 부착 계수에 관한 연구)

  • Song, Byoung-Doo;Jeon, Byoung-Hoon;Ha, Sung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.375-380
    • /
    • 2005
  • CF₄ molecular gas is used in most of semiconductor manufacture processing and SF/sub 6/ molecular gas is widely used in industrial of insulation field. but both of gases have defect in global warming. C₃F/sub 8/ gas has large attachment cross-section more than these gases, moreover GWP, life-time and price of C₃F/sub 8/ gas is lower than them, therefor it is important to calculate transport coefficients of C₃F/sub 8/ gas like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient and critical E/N. The aim of this study is to get these transport coefficients for imformation of the insulation strength and efficiency of etching process. In this paper, we calculated the electron drift velocity (W) in pure C₃F/sub 8/ molecular gas over the range of E/N=0.1∼250 Td at the temperature was 300 K and gas pressure was 1 Torr by the Boltzmann equation method. The results of this paper can be important data to present characteristic of gas for plasma etching and insulation, specially critical E/N is a data to evaluate insulation strength of a gas.