• Title/Summary/Keyword: 4D-Lung

Search Result 370, Processing Time 0.036 seconds

Thymidylate Synthase Polymorphisms and Risk of Lung Cancer among the Jordanian Population: a Case Control Study

  • Qasem, Wiam Al;Yousef, Al-Motassem;Yousef, Mohammad;Manasreh, Ihab
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8287-8292
    • /
    • 2016
  • Background: Thymidylate synthase (TS) catalyzes the methylation of deoxyuridylate to deoxythymidylate and is involved in DNA methylation, synthesis and repair. Two common polymorphisms have been reported, tandem repeats in the promoter-enhancer region (TSER), and 6bp ins/del in the 5'UTR, that are implicated in a number of human diseases, including cancer. The association between the two polymorphisms in risk for lung cancer (LC) was here investigated in the Jordanian population. Materials and Methods: An age, gender, and smoking-matched case-control study involving 84 lung cancer cases and 71 controls was conducted. The polymerase chain reaction/restriction fragment length polymorphism (PCR-RFLP) technique was used to detect the polymorphism of interest. Results: Individuals bearing the ins/ins genotype were 2.5 times more likely to have lung cancer [(95%CI: 0.98-6.37), p=0.051]. Individuals who were less than or equal to 57 years and carrying ins/ins genotype were 4.6 times more susceptible to lung cancer [OR<57 vs >57years: 4.6 (95%CI: 0.93-22.5), p=0.059)]. Genotypes and alleles of TSER were distributed similarly between cases and controls. Weak linkage disequilibrium existed between the two loci of interest (Lewontin's coefficient [D']) (LC: D' =0.03, r2: 0. 001, p=0.8; Controls: D' =0.29, r2: 0.08, p=0.02). Carriers of the "3 tandem repeats_insertion" haplotype (3R_ins) were 2 times more likely to have lung cancer [2 (95%CI: 1.13-3.48), p=0.061]. Conclusions: Genetic polymorphism of TS at 3 'UTR and its haplotype analysis may modulate the risk of lung cancer in Jordanians. The 6bp ins/del polymorphism of TS at 3 'UTR is more informative than TSER polymorphism in predicting increased risk.

Study of Joint Histogram Based Statistical Features for Early Detection of Lung Disease (폐질환 조기 검출을 위한 결합 히스토그램 기반의 통계적 특징 인자에 대한 연구)

  • Won, Chul-ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • In this paper, new method was proposed to classify lung tissues such as Broncho vascular, Emphysema, Ground Glass Reticular, Ground Glass, Honeycomb, Normal for early lung disease detection. 459 Statistical features was extraced from joint histogram matrix based on multi resolution analysis, volumetric LBP, and CT intensity, then dominant features was selected by using adaboost learning. Accuracy of proposed features and 3D AMFM was 90.1% and 85.3%, respectively. Proposed joint histogram based features shows better classification result than 3D AMFM in terms of accuracy, sensitivity, and specificity.

Moderate hypofractionated image-guided thoracic radiotherapy for locally advanced node-positive non-small cell lung cancer patients with very limited lung function: a case report

  • Manapov, Farkhad;Roengvoraphoj, Olarn;Li, Minglun;Eze, Chukwuka
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.180-184
    • /
    • 2017
  • Patients with locally advanced lung cancer and very limited pulmonary function (forced expiratory volume in 1 second $[FEV1]{\leq}1L$) have dismal prognosis and undergo palliative treatment or best supportive care. We describe two cases of locally advanced node-positive non-small cell lung cancer (NSCLC) patients with very limited lung function treated with induction chemotherapy and moderate hypofractionated image-guided radiotherapy (Hypo-IGRT). Hypo-IGRT was delivered to a total dose of 45 Gy to the primary tumor and involved lymph nodes. Planning was based on positron emission tomography-computed tomography (PET/CT) and four-dimensional computed tomography (4D-CT). Internal target volume (ITV) was defined as the overlap of gross tumor volume delineated on 10 phases of 4D-CT. ITV to planning target volume margin was 5 mm in all directions. Both patients showed good clinical and radiological response. No relevant toxicity was documented. Hypo-IGRT is feasible treatment option in locally advanced node-positive NSCLC patients with very limited lung function ($FEV1{\leq}1L$).

Korean Red Ginseng water extract inhibits cadmium-induced lung injury via suppressing MAPK/ERK1/2/AP-1 pathway

  • Mitra, Ankita;Rahmawati, Laily;Lee, Hwa Pyoung;Kim, Seung A.;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.690-699
    • /
    • 2022
  • Background: Few studies reported the therapeutic effect of Korean Red Ginseng (KRG) in lung inflammatory diseases. However, the anti-inflammatory role and underlying molecular in cadmium-induced lung injury have been poorly understood, directly linked to chronic lung diseases (CLDs): chronic obstructive pulmonary disease (COPD), cancer etc. Therefore, in this study we aim to investigate the therapeutic activities of water extract of KRG (KRG-WE) in mouse cadmium-induced lung injury model. Method: The anti-inflammatory roles and underlying mechanisms of KRG-WE were evaluated in vitro under cadmium-stimulated lung epithelial cells (A549) and HEK293T cell line and in vivo in cadmium-induced lung injury mouse model using semi-quantitative polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), luciferase assay, immunoblotting, and FACS. Results: KRG-WE strongly ameliorated the symptoms of CdSO4-induced lung injury in mice according to total cell number in bronchoalveolar lavage fluid (BALF) and severity scores as well as cytokine levels. KRG-WE significantly suppressed the upregulation of inflammatory signaling comprising mitogen-activated protein kinases (MAPK) and their upstream enzymes. In in vitro study, KRG-WE suppressed expression of interleukin (IL)-6, matrix metalloproteinase (MMP)-2, and IL-8 while promoting recovery in CdSO4-treated A549 cells. Similarly, KRG-WE reduced phosphorylation of MAPK and c-Jun/c-Fos in cadmium-exposed A549 cells. Conclusion: KRG-WE was found to attenuate symptoms of cadmium-induced lung injury and reduce the expression of inflammatory genes by suppression of MAPK/AP-1-mediated pathway.

The Effects of Resveratrol on Silica-Induced Lung Oxidative Stress and Inflammation in Rat

  • Maryam Esfahani;Amir Hossein Rahbar;Sara Soleimani Asl;Saed Bashirian;Effat Sadat Mir Moeini;Fereshteh Mehri
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.118-123
    • /
    • 2023
  • Background: Chronic exposure to silica is related with the provocation of an inflammatory response and oxidative stress mechanism. Vitamin D has multiple benefits in biological activities particularly respiratory system disease. Method: In this research, 20 male Wistar rats were randomly allocated into four groups (5 rats /group) as follow: Group1 received saline as (negative control) group. The group 2 received a single IT instillation of silica (positive control) group; the group 3 was co-administrated with single IT silica and Vitamin D (20 mg/kg/day) daily for a period of 90 days. The rats of group 4 received Vitamin D daily for a period of 90 days. Results: Silica significantly increased serum and lung total Oxidant Status (TOS). Meanwhile, silica reduced serum and lung total antioxidant capacity (TAC), GSH and tumor necrosis factor-α (TNF-a). Vitamin D treatment meaningfully reversed oxidative stress, antioxidants status and inflammatory response. Also, Vitamin D improved histopathological changes caused by silica. Conclusion: These findings indicate that Vitamin D exerts protective effects against silica-induced lung injury. It seems that Vitamin D has potential use as a therapeutic object for silica induced lung injure.

Dosimetric Effects of Low Dose 4D CT Using a Commercial Iterative Reconstruction on Dose Calculation in Radiation Treatment Planning: A Phantom Study

  • Kim, Hee Jung;Park, Sung Yong;Park, Young Hee;Chang, Ah Ram
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • We investigated the effect of a commercial iterative reconstruction technique (iDose, Philips) on the image quality and the dose calculation for the treatment plan. Using the electron density phantom, the 3D CT images with five different protocols (50, 100, 200, 350 and 400 mAs) were obtained. Additionally, the acquired data was reconstructed using the iDose with level 5. A lung phantom was used to acquire the 4D CT with the default protocol as a reference and the low dose (one third of the default protocol) 4D CT using the iDose for the spine and lung plans. When applying the iDose at the same mAs, the mean HU value was changed up to 85 HU. Although the 1 SD was increased with reducing the CT dose, it was decreased up to 4 HU due to the use of iDose. When using the low dose 4D CT with iDose, the dose change relative to the reference was less than 0.5% for the target and OARs in the spine plan. It was also less than 1.1% in the lung plan. Therefore, our results suggests that this dose reduction technique is applicable to the 4D CT image acquisition for the radiation treatment planning.

The Mechanism of Iron Transport after Intratracheal Instillation of Iron in Rats (랏트의 기관내 Fe 노출후 Fe 이동에 대한 연구)

  • Kwon, Min;Choi, Byung-Sun;Park, Eon-Sub;Chung, Nam-Hyun;Park, Sung-Jo;Lim, Young;Park, Jung-Duck
    • Journal of Preventive Medicine and Public Health
    • /
    • v.37 no.4
    • /
    • pp.329-336
    • /
    • 2004
  • Objectives : Iron (Fe) is an essential element in biological processes; however excessive Fe is harmful to human health. Some air pollutants contain a high level of Fe, and the human lung could therefore be over-exposed to Fe through inhaled air pollutants. This study was performed to investigate the role of metal transporters (divalent metal transporter 1, DMT1, and metal transporter protein 1, MTP1) in the lung under the environments of Fe deficiency in the body and Fe over-exposure in the lung. Methods : Rats were fed Fe deficient (FeD, 2-6 mg Fe/kg) or Fe supplemented (FeS, 120 mg Fe/kg) diet for 4 weeks, followed by a single intratracheal instillation of ferrous sulfate at low (10 mg/kg) or high (20 mg/kg) dose. Fe concentration was analyzed in the serum, lung and liver, and histopathological findings were observed in the lung at 24 hours after Fe administration. The level of DMT1 and MTP1 expression in the lung was analyzed by RT-PCR. Also, the effect of Fe deficiency in the body was evaluated on the level of Fe concentration and metal transporters compared to FeS-diet fed rats at the end of 4-week FeD or FeS diet. Results : The 4-week FeD diet in rats induced an Fe deficiency anemia with decreased serum total Fe, increased unsaturated Fe binding capacity and hypochromic microcytic red blood cells. The concentration of Fe in the lung and liver was lower in the FeD-diet fed rats than in the FeS-diet fed rats. The level of metal transporters mRNA expression was higher in the FeD-diet fed rats than in the FeS-diet. The concentration of Fe in the lung was increased in a dose-dependent pattern after intratracheal instillation of Fe into the rats, while the level of Fe in the serum and liver was not increased in the low-dose Fe administered rats. Therefore, DMT1 and MTP1 mRNA was highly expressed in both FeD-diet and FeS-diet fed rats, after intratracheal instillation of Fe. Conclusions : DMT1 and MTP1 mRNA were more highly expressed in FeD-diet fed rats than in FeS-diet fed rats. The over-exposure of Fe intratracheally induced high expression of metal transporters and increased Fe deposition in the lung in both FeD-diet and FeS-diet fed rats, but did not increase the Fe level of the serum and liver in low-dose Fe administered rats. These results suggest that the role of metal transporters in the lung might be different in a part from the duodenum under the environment of over-exposure to Fe.

Characterization of Immune Cells From the Lungs of Patients With Chronic Non-Tuberculous Mycobacteria or Pseudomonas aeruginosa Infection

  • Alan R. Schenkel;John D. Mitchell;Carlyne D. Cool;Xiyuan Bai;Steve Groshong;Tilman Koelsch;Deepshikha Verma;Diane Ordway;Edward D. Chan
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.27.1-27.13
    • /
    • 2022
  • Little is known of the lung cellular immunophenotypes in patients with non-tuberculous mycobacterial lung disease (NTM-LD). Flow-cytometric analyses for the major myeloid and lymphoid cell subsets were performed in less- and more-diseased areas of surgically resected lungs from six patients with NTM-LD and two with Pseudomonas aeruginosa lung disease (PsA-LD). Lymphocytes, comprised mainly of NK cells, CD4+ and CD8+ T cells, and B cells, accounted for ~60% of all leukocytes, with greater prevalence of T and B cells in more-diseased areas. In contrast, fewer neutrophils were found with decreased number in more-diseased areas. Compared to NTM-LD, lung tissues from patients with PsA-LD demonstrated relatively lower numbers of T and B lymphocytes but similar numbers of NK cells. While this study demonstrated a large influx of lymphocytes into the lungs of patients with chronic NTM-LD, further analyses of their phenotypes are necessary to determine the significance of these findings.

Target dose study of effects of changes in the AAA Calculation resolution on Lung SABR plan (Lung SABR plan시 AAA의 Calculation resolution 변화에 의한 Target dose 영향 연구)

  • Kim, Dae Il;Son, Sang Jun;Ahn, Bum Seok;Jung, Chi Hoon;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.171-176
    • /
    • 2014
  • Purpose : Changing the calculation grid of AAA in Lung SABR plan and to analyze the changes in target dose, and investigated the effects associated with it, and considered a suitable method of application. Materials and Methods : 4D CT image that was used to plan all been taken with Brilliance Big Bore CT (Philips, Netherlands) and in Lung SABR plan($Eclipse^{TM}$ ver10.0.42, Varian, the USA), use anisotropic analytic algorithm(AAA, ver.10, Varian Medical Systems, Palo Alto, CA, USA) and, was calculated by the calculation grid 1.0, 3.0, 5.0 mm in each Lung SABR plan. Results : Lung SABR plan of 10 cases are using each of 1.0 mm, 3.0 mm, 5.0 mm calculation grid, and in case of use a 1.0 mm calculation grid $V_{98}$. of the prescribed dose is about $99.5%{\pm}1.5%$, $D_{min}$ of the prescribed dose is about $92.5{\pm}1.5%$ and Homogeneity Index(HI) is $1.0489{\pm}0.0025$. In the case of use a 3.0 mm calculation grid $V_{98}$ dose of the prescribed dose is about $90{\pm}4.5%$, $D_{min}$ of the prescribed dose is about $87.5{\pm}3%$ and HI is about $1.07{\pm}1$. In the case of use a 5.0 mm calculation grid $V_{98}$ dose of the prescribed dose is about $63{\pm}15%$, $D_{min}$ of the prescribed dose is about $83{\pm}4%$ and HI is about $1.13{\pm}0.2$, respectively. Conclusion : The calculation grid of 1.0 mm is better improves the accuracy of dose calculation than using 3.0 mm and 5.0 mm, although calculation times increase in the case of smaller PTV relatively. As lung, spread relatively large and low density and small PTV, it is considered and good to use a calculation grid of 1.0 mm.

The Dose and Risk Reduction from Adoption of Automatic mA Control in 4D CT Scans (자동전류조절기능을 사용한 4D CT 촬영시 선량 및 위험도 저감 효과)

  • Ko, Young Eun;Je, Hyoung Uk;Hwang, Yeon;Park, Sung Ho
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • In this study, the reduction of dose and risk was evaluated from using automatic mA control in 4D CT scan of patients whose organ movement was considered for gated radiotherapy. The organ doses, CTDI, effective doses from 4D CT with and without using automatic mA control were evaluated using CT-Expo program for each 10 patients of liver and lung cancer, and the risk of exposure induced death and loss of life expectancy were evaluated using PCXMC program. It was founded that there were 26.8%, and 15.5% dose reduction in organ doses and CTDI for liver and lung cancer patients and 16.5% and 19.8% risk reduction in liver and lung cancer patients. The organ doses and effective doses were evaluated for the parameter of each patient used in CT scans, and risks considering age and gender could be evaluated. It was founded that there were 21.2% dose reduction and 18.2% risk reduction in 4D CT scan using AEC for liver and lung cancer patients.