• Title/Summary/Keyword: 4D simulation

Search Result 2,592, Processing Time 0.031 seconds

A Molecular Dynamics Simulation Study of Ranciéite-takanelite Solid Solution Crystal Structures (란시아이트-다카네라이트 고용체 결정구조에 대한 분자동역학 시뮬레이션 연구)

  • Han, Suyeon;Kwon, Kideok D.
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • Ranciéte is a hexagonal phyllomanganate mineral containing random Mn(IV) vacancies with hydrated Ca2+ cations charged balanced as interlayer cations. Its Mn2+ analogue is called takanelite, and ranciéite and takanelite are regarded as end-members of a solid solution series of (Ca2+,Mn2+)Mn4O9·nH2O. Because the minerals are found as very small particles associated with other minerals, the crystal structures of the solid solution series have yet to be defined. In this research, we conducted classical molecular dynamics (MD) simulations of ranciéite and takanelite by varying the Mn2+/Ca2+ interlayer cation ratio to find relations between the interlayer cations and mineral structures. MD simulation results of chalcophanite group minerals are compared with experimental results to verify our method applied. Then, lattice parameters of ranciéite and takanelite models are presented along with detailed interlayer structures as to the distribution and coordination of cations and water molecules. This study shows the potentials of MD simulations in entangling complicated phyllomanganates structures.

Characteristics of Generated Fibrous/Particulate Matters from Asbestos-Containing Building Materials(ACBMs) (해체·제거 작업 시 석면함유 건축자재에서 발생되는 섬유 및 입자상 물질의 특성)

  • Choi, Sungwon;Jang, Kwang Myoung;Park, Kyung Hoon;Kim, Dae Jong;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.184-193
    • /
    • 2015
  • Objectives: This study focused on three aspects: characterizing concentrations of airborne particles by size distributions and asbestos fibers generated by various building materials; analyzing the characteristics of fibers produced by each simulation and asbestos fibers released from ACBMs; and investigating correlations of airborne asbestos fibers and particles generated and association of particle and asbestos concentrations. Methods: We selected three ACBMs including an insulation board, cement asbestos slate and wallboard. We constructed 4 scenarios; a) crushing with a hammer; b) cutting with a industrial knife; c) brushing with a metal brush; and d) tightening & loosening with a hand drill. We implemented one simulation for 30 seconds followed by 30 seconds resting period. We repeated a total of 5 cycles for 5 minutes. Results: The highest concentration of particulate & fibrous matters was from crushing with a hammer in each scenario followed by brushing with a metal brush, cutting with a industrial knife, and tightening & loosening with a hand drill. For ACBMs studied, asbestos concentrations were highest from an insulation board followed by cement asbestos slate, and wallboard. No difference in terms of concentration was found between an insulation board and asbestos slate. Fibers with $5{\sim}20{\mu}m$ in length were included in 76~90% of total fibrous matters. The distribution of the straight form fibers was greater than that of the curl form. About 90% of $PM_{Total}$ released from ACBMs was consisted of $PM_{10}$ while only 10% of $PM_{Total}$ was $PM_{2.5}$. Particulate matters like $PM_{2.5}$ was significantly correlated with fibrous matters($R^2=0.81$). Conclusions: We found ACBMs can significantly release asbestos fibers as well as $PM_{2.5}$. Concentrations of asbestos generated by ACBMs were well correlated with $PM_{2.5}$.

Comparative analysis of inundation flow patterns and flood risk assessment methods within subway stations (지하철 역사 내 침수 흐름 분석 및 침수 위험도 평가 방법 비교)

  • Shin, Jaehyun;Kim, Minjeong;Cho, Inhwan;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.667-678
    • /
    • 2023
  • In this study, quasi-3D inundation flow simulations were conducted for a simplified subway station configuration. The effects of variations in rainwater inflow locations and discharge were investigated, analyzing the resulting inundation flow patterns and flood risk. The inundation simulation results calculated the incipient velocities for slipping and toppling accidents to assess pedestrian safety. The results indicated that velocities exceeding the incipient velocity for slipping accidents mainly occurred on the flooded staircase. Meanwhile, velocities surpassing the incipient toppling accidents were observed around the staircase and the corridor near the staircase leading to B2F. This observation is consistent with the results from the specific force distribution analysis. To provide detailed flood risk assessments, the Flood Hazard Degree (FD) was applied with four levels of criteria, along with the Flood Intensity Factor (FIF). The results demonstrated that FD identified a broader area at risk of flood-induced consequences compared to FIF. When comparing the different inundation risk assessment methods, the specific force method tended to overestimate the risk area, whereas FIF tended to underestimate it. Furthermore, among all assessment methods, the influence of rainwater discharge was found to have a more dominant effect on flood risk assessment compared to the number of rainwater inflow locations. Additionally, the direction of inundation flow influenced the assessed risk, with collision-induced flow patterns leading to higher flood risk than those with identical flow directions.

Physical Property Analysis of Composite Electrodes with Different Active Material Sizes and Densities using 3D Structural Modeling (3차원 구조 모델링을 이용한 활물질 입자 크기 및 전극 밀도에 따른 복합 전극 내 물리적 특성 분석)

  • Yang, Seungwon;Park, Joonam;Byun, Seoungwoo;Kim, Nayeon;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.39-46
    • /
    • 2020
  • Composite electrodes for rechargeable batteries generally consist of active material, electric conductor, and polymeric binder. And their composition and distribution within the composite electrode determine the electrochemical activity in the electrochemical systems. However, it is not easy to quantify the physical properties of composite electrodes themselves using conventional experimental analysis tools. So, 3D structural modeling and simulation can be an efficient design tool by looking into the contact areas between particles and electric conductivity within the composite electrode. In this study, while maintaining the composition (LiCoO2 : Super P Li® : Polyvinylidene Fluoride (PVdF) = 93 : 3 : 4 by wt%) and loading level (13 mg cm-2) of the composite electrode, the effects of LiCoO2 size (10 ㎛ and 20 ㎛) and electrode density (2.8 g cm-3, 3.0 g cm-3, 3.2 g cm-3, 3.5 g cm-3, 4.0 g cm-3) on the physical properties are investigated using a GeoDict software. With this tool, the composite electrode can be efficiently designed to optimize the contact area and electric conductivity.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

Developing Coast Vulnerable Area Information Management System using Web GIS (Web GIS를 이용한 연안위험취약지역 정보시스템 구축)

  • Pak, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • The coast has been known as very vulnerable area. This area has nature disasters such as typhoon, tidal wave, flood and storm almost every year. In this study, coast vulnerable area information management system was developed to manage the coastal facilities and vulnerable area through Web GIS. This system is able to visualize the damage area and support the official work related to coast as efficient DSS(Decision Supporting System). Moreover, the foundation for domestic coast information management is expected by acquiring less cost and time. For this, GIS DB was first constructed by acquiring damage factor data such as typhoon, tidal wave, flood and storm. Then GIS analysis methods and high resolution satellite images are used to possibly present the results of retrieve as table, map, graph, inundation simulation in real time.

  • PDF

Reduced-bit transform based block matching algorithm via SAD (영상의 저 비트 변환을 이용한 SAD 블록 정합 알고리즘)

  • Kim, Sang-Chul;Park, Soon-Yong;Chien, Sung-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.107-115
    • /
    • 2014
  • The reduced-bit transform based bit-plane matching algorithm (BPM) can obtain the block matching result through its simple calculation and hardware design compared to the conventional block matching algorithms (BMAs), but the block matching accuracy of BPMs is somewhat low. In this paper, reduced-bit transform based sum of the absolute difference (R-SAD) is proposed to improve the block matching accuracy in comparison with the conventional BPMs and it is shown that the matching process can be obtained using the logical operations. Firstly, this method transforms the current and the reference images into their respective 2-bit images and then a truth table is obtained from the relation between input and output 2-bit images. Next, a truth table is simplified by Karnaugh map and the absolute difference is calculated by using simple logical operations. Finally, the simulation results show that the proposed R-SAD can obtain higher accuracy in block matching results compared to the conventional BPMs through the PSNR analysis in the motion compensation experiments.

Performance Evaluation of Propane(R290)/Isobutane(R600a) Mixture as a Substitute for CFC12 in Domestic Refrigerators (프로판/이소부탄 혼합냉매를 적용한 가정용 냉장고의 성능에 관한 연구)

  • Lim, B.H.;Park, Y.B.;Yoo, H.K.;Jung, D.S.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.249-265
    • /
    • 1995
  • The performance of a refrigerant mixture of propane(R290)/isobutane(R600a) as a substitute for CFC12 was investigated in a domestic refrigerator with single evaporator. A thermodynamic cycle simulation indicated an increase in COP of a 1.7 to 2.4% with R-290/600a in the composition range of 0.2 to 0.6 mass fraction of R290 compared to CFC12. For the tests, two units($299{\ell}$, $465{\ell}$) were used. All refrigeration components remained the same throughout the tests, except that the length of capillary tube and amount of charge were changed for the mixture. The refrigerators were fully instrumented with more than 20 thermocouples, 2 pressure transducers, and watt/watt-hour meter for each refrigerator. 'Energy consumption test' and 'no load pulldown test' were performed under the same condition. The experimental results obtained with the same compressor indicated that R-290/600a mixture at 0.6 mass fraction of R290 showed a 3 to 5% increase in energy efficiency and a faster cooling speed compared to CFC12. The R-290/600a mixture showed a shorter compressor on-time and a lower compressor dome temperature than CFC12. In conclusion, the proposed hydrocarbon mixture seems to be an appropriate candidate to replace CFC12 without causing more environmental problems.

  • PDF

Camera calibration parameters estimation using perspective variation ratio of grid type line widths (격자형 선폭들의 투영변화비를 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Choi, Seong-Gu;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.30-32
    • /
    • 2004
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as lens distortion, focal length, scale factor, pose, orientations, and distance. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1, 2, 3, 4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. The average scale factor tends to fluctuate with small variation and makes distance error decrease. Compared with classical methods that use stereo camera or two or three orthogonal planes, the proposed method is easy to use and flexible. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF