• Title/Summary/Keyword: 4D Simulator

Search Result 290, Processing Time 0.029 seconds

Study on a Simulator for Generating Side Walking Path of the Biped Walking Robot (이족보행로봇의 횡보행 경로생성을 위한 시뮬레이터 연구)

  • Choi, Hyeung-Sik;Jeon, Chang-Hoon;Kang, Jin-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1285-1295
    • /
    • 2008
  • A research on a simulator for a side walking path of a 16 degree-of-freedom (d.o.f) biped walking robot(BWR) which is composed of 4 d.o.f upper-part body and 12 d.o.f lower-part of the body is presented. For generation of stable side walking motion, the kinematics, dynamics and the zero moment of point(ZMP) of the BWR were analyzed analytically and included in the simulator. To operate the motion simulator for stable side walking of the BWR, a graphic user interface program was developed which needs inputs for the side distance between legs, base joint angle, walking type, and walking velocity. The simulator was developed to generate joint angle data of legs for side walking, and the data are transmitted to the BWR for stable side walking. In the simulator, a new path function for smooth walking motion was proposed and applied to the simulator and actual motion of a BWR. Also for actual side walking, an algorithm for estimating backlashes of the actuating joint motors was proposed and included in the simulator. To validate the performance of the proposed motion simulator, the simulator was operated and its side walking data of the simulator were generated for a period of side walking.

960MHz band multi-layer VCO design (960MHz 대역 다층구조 VCO 설계)

  • Rhie, Dong-Hee;Jung, Jin-Hwee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.410-413
    • /
    • 2001
  • In this paper, we present results of this that design of the multi-layer VCO(Voltage Controlled Oscillator), which is composed of the resonation circuit and the oscillation circuit, using EM simulator and nonlinear RF circuit simulator. EM simulator is used for acquiring EM(Electromagnetic) characteristics of conductor pattern as well as designing multi-layer VCO, Acquired EM characteristics of the circuit pattern was used like real components at nonlinear RF circuit simulator. Finally VCO is simulated at nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was DuPont #9599, which is applied for L TCC process. The structure is constructed with 4 conducting layer. Simulated results showed that the output level was about 1[dBm], the phase noise was 102 [dBc/Hz] at 30[kHz] offset frequency, the harmonics -8dBc, and the control voltage sensitivity of 30[MHz/V] with a DC current consumption of l0[mA]

  • PDF

960MHz band multi-layer VCO design (960MHz대역 다층구조 VCO 설계)

  • 이동희;정진휘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.410-413
    • /
    • 2001
  • In this paper, we present results of this that design of the multi-layer VCO(Voltage Controlled Oscillator), which is composed of the resonation circuit and the oscillation circuit, using EM simulator and nonlinear RF circuit simulator. EM simulator is used for acquiring EM(Electromagnetic) characteristics of conductor pattern as well as designing multi-layer VCO, Acquired EM characteristics of the circuit pattern was used like real components at nonlinear RF circuit simulator. Finally VCO is simulated at nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was Dupont #9599, which is applied for LTCC process. The structure is constructed with 4 conducting layer. Simulated results showed that the output level was about 1[dBm], the phase noise was 102 [dBc/Hz] at 30[kHz] offset frequency, the harmonics -8dBc, and the control voltage sensitivity of 30[MHz/V] with a DC current consumption of 10[mA].

  • PDF

Development of a 3D Graphic Simulator for Assembling Robot (조립용 로봇이 3차원 그래픽 시뮬레이터 개발)

  • 장영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.227-232
    • /
    • 1998
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 axes SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

Design of Multi-layer VCO for 960 MHz Band (960 MHz대역 다층구조 VCO 설계)

  • 이동희;정진휘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.492-498
    • /
    • 2002
  • In this paper, we present the simulation results of multi-layer VCO(voltage controlled oscillator), which is composed of resonator, oscillator, and buffer circuit, using EM simulator and nonlinear RF circuit simulator. EM simulator is used for obtaining the EM(Electromagnetic) characteristics of conductor pattern as well as designing the multi-layer VCO. Obtained EM characteristics were used as real components in nonlinear RF circuit simulation. Finally the overall VCO was simulated by the nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was Dupont 951AT, which will be applied for LTCC process. The structure of multi-layer VCO is constructed with 4 conducting layer. Simulated results showed that the output level was about 4.5 [dBm], the phase noise was -104 [dBc/Hz] at 30 [kHz] offset frequency, the harmonics -8 dBc, and the control voltage sensitivity of 30 [MHz/V] with a DC current consumption of 9.5 [mA]. The size of VCO is $6{\times}9{\times}2 mm$(0.11 [cc]).

Oscillation Characteristics of the Multi-Layered VCO for using 960 MHz Band (960 MHz 다층구조 VCO 발진특성)

  • Rhie, Dong-Hee;Park, Gwi-Nam;Lee, Hun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.653-656
    • /
    • 2002
  • In this paper, we present the simulation results of multi-layer VCO(voltage controlled oscillator), which is composed of resonator, oscillator, and buffer circuit, using EM simulator and nonlinear RF circuit simulator. EM simulator is used for obtaining the EM(Electromagnetic) characteristics of conductor pattern as well as designing the multi-layer VCO. Obtained EM characteristics were used as real components in nonlinear RF circuit simulation. Finally the overall VCO was simulated by the nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was DuPont 951AT, which will be applied for LTCC process. The structure of multi-layer VCO is constructed with 4 conducting layer. Simulated results showed that the output level was about 4.5 [dBm], the phase noise was -104 [dBc/Hz] at 30 [kHz] offset frequency, the harmonics -8 dBc, and the control voltage sensitivity of 30 [MHz/V] with a DC current consumption of 9.5 [mA]. The size of VCO is $6{\times}9{\times}2$ mm(0.11[cc]).

  • PDF

Development of VR Ship Environment for The Educational Training of Ship Survey (선박 검사 교육훈련을 위한 VR 선박 환경 구축)

  • Kil, WooSung;Son, Myeong-Jo;Lee, Jeong-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.361-369
    • /
    • 2018
  • The ship surveyor makes a scheme of reasonable ship operation by examining whether the ship has been properly constructed in accordance with the rule of classification societies and international conventions or whether the facilities of the ship in operation meet the standard stipulated by law. Even though the ship surveyors of classification society generally consist of people who have the skill of design or operation of a ship, it takes a long time to train a surveyor to the maturity level. This paper describes the development of survey simulator based on virtual ship environment that enables the surveyor minimize trial and errors to survey the ships. By using VR(Virtual Reality) based survey simulator, surveyors possibly achieve improvement of competence in survey quality by means of safe and immersive training environment. In order to improve the usability and utility of the VR simulator, the ship 3D model has been generated using 3D CAD model for design and production in shipyard. Through this, we suggested the possibility of consistent use of 3D model as the digital twin of a ship.

Interactive ADAS development and verification framework based on 3D car simulator (3D 자동차 시뮬레이터 기반 상호작용형 ADAS 개발 및 검증 프레임워크)

  • Cho, Deun-Sol;Jung, Sei-Youl;Kim, Hyeong-Su;Lee, Seung-gi;Kim, Won-Tae
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.970-977
    • /
    • 2018
  • The autonomous vehicle is based on an advanced driver assistance system (ADAS) consisting of a sensor that collects information about the surrounding environment and a control module that determines the measured data. As interest in autonomous navigation technology grows recently, an easy development framework for ADAS beginners and learners is needed. However, existing development and verification methods are based on high performance vehicle simulator, which has drawbacks such as complexity of verification method and high cost. Also, most of the schemes do not provide the sensing data required by the ADAS directly from the simulator, which limits verification reliability. In this paper, we present an interactive ADAS development and verification framework using a 3D vehicle simulator that overcomes the problems of existing methods. ADAS with image recognition based artificial intelligence was implemented as a virtual sensor in a 3D car simulator, and autonomous driving verification was performed in real scenarios.

Implementing Solar System Simulator using Python Script (파이선 스크립트를 이용한 태양계 행성 시뮬레이터 구현)

  • Choi, Eun-Young;Lee, Imgeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • In this paper, we introduce a simulation tool for solar system using 3D animation tool MAYA. It accurately models solar system's astronomical features, such as each planet's orbital period, orbital speed, relative size, and texture, etc. This simulator visualize the solar system in 3D, which can be used to easily understands the system's positioning and astronomical movements. With a conventional Maya modeling process using menus and UI windows, it is difficult to assign correct physical attributes of planets. We use Python script to set up each planet's astronomical parameters. The proposed simulator is rendered as real as possible to be used for virtual reality and educational purpose.

UHF Band Multi-layer VCO Design Using RF Simulator (RF 시뮬레이터를 이용한 UHF대역 다층구조 VCO 설계)

  • Rhie, Dong-Hee;Jung, Jin-Hwee
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.96-99
    • /
    • 2001
  • In this paper, we present the simulation results of the multi-layer VCO(Voltage Controlled Oscillator), which is composed of the resonator, the oscillator and the buffer circuit. using EM simulator and nonlinear RF circuit simulator. EM simulator is used for obtaining the EM(Electromagnetic) characteristics of the conductor pattern as well as designing the multi-layer VCO. Obtained EM characteristics were used as real components in nonlinear RF circuit simulation. Finally the overall VCO was simulated using the nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was DuPont 951AT, which will be applied for LTCC process. The structure is constructed with 4 conducting layer. Simulated results showed that the output level was about 4.5[dBm], the phase noise was -104[dBc/Hz] at 30[kHz] offset frequency, the harmonics -8dBc, and the control voltage sensitivity of 30[MHz/V] with a DC current consumption of 9.5[mA]. The size of VCO is $6{\times}9{\times}2mm$(0.11[cc]).

  • PDF