• Title/Summary/Keyword: 4D CT

Search Result 551, Processing Time 0.035 seconds

Development of 4D CT Data Generation Program based on CAD Models through the Convergence of Biomedical Engineering (CAD 모델 기반의 4D CT 데이터 제작 의용공학 융합 프로그램 개발)

  • Seo, Jeong Min;Han, Min Cheol;Lee, Hyun Su;Lee, Se Hyung;Kim, Chan Hyeong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.131-137
    • /
    • 2017
  • In the present study, we developed the 4D CT data generation program from CAD-based models. To evaluate the developed program, a CAD-based respiratory motion phantom was designed using CAD software, and converted into 4D CT dataset, which include 10 phases of 3D CTs. The generated 4D CT dataset was evaluated its effectiveness and accuracy through the implementation in radiation therapy planning system (RTPS). Consequently, the results show that the generated 4D CT dataset can be successfully implemented in RTPS, and targets in all phases of 4D CT dataset were moved well according to the user parameters (10 mm) with its stationarily volume (8.8 cc). The developed program, unlike real 4D CT scanner, due to the its ability to make a gold-standard dataset without any artifacts constructed by modality's movements, we believe that this program will be used when the motion effect is important, such as 4D radiation treatment planning and 4D radiation imaging.

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

Dosimetric Effects of Low Dose 4D CT Using a Commercial Iterative Reconstruction on Dose Calculation in Radiation Treatment Planning: A Phantom Study

  • Kim, Hee Jung;Park, Sung Yong;Park, Young Hee;Chang, Ah Ram
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • We investigated the effect of a commercial iterative reconstruction technique (iDose, Philips) on the image quality and the dose calculation for the treatment plan. Using the electron density phantom, the 3D CT images with five different protocols (50, 100, 200, 350 and 400 mAs) were obtained. Additionally, the acquired data was reconstructed using the iDose with level 5. A lung phantom was used to acquire the 4D CT with the default protocol as a reference and the low dose (one third of the default protocol) 4D CT using the iDose for the spine and lung plans. When applying the iDose at the same mAs, the mean HU value was changed up to 85 HU. Although the 1 SD was increased with reducing the CT dose, it was decreased up to 4 HU due to the use of iDose. When using the low dose 4D CT with iDose, the dose change relative to the reference was less than 0.5% for the target and OARs in the spine plan. It was also less than 1.1% in the lung plan. Therefore, our results suggests that this dose reduction technique is applicable to the 4D CT image acquisition for the radiation treatment planning.

Usefulness of "Volumetrix Suite" with SPECT/CT (SPECT/CT 영상에서 Volumetrix Suite의 유용성)

  • Cho, Seung-Wook;Shin, Byeong-Ho;Kim, Jong-Pil;Yoon, Seok-Hwan;Kim, Tae-Yeub;Seung, Yong-Joon;Moon, Il-Sang;Woo, Jae-Ryong;Lee, Ho-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.166-171
    • /
    • 2010
  • Purpose: The SPECT/CT is able to acquire diagnostic information resolved the difficult problems that discriminate regions of focals by intergrating functional images and anatomical images. We introduce the usefulness of "Volumetrix Suite" which can describe 3D images by the convergence of the SPECT/CT images and reference CT images. Materials and Methods: We applied Volumetrix Suite program (Volumetrix IR, Volumetrix 3D) to patients, Bone, Venography, Parathyroid, WBC, taken diagnostic CT examination which have same regions of focal in Seoul Metropolitan Government Seoul National University Boramae Medical Center. After acquiring SPECT/CT images and reference CT images, we fused a couple of scans applying for this programs. The CT scan of Infinia Hawkeye 4 shows limitation of anatomical information. For this reason, we tried to transfer CT images that have lots of diagnostic informations as the form of Dicom file in PACS, and changed from 2D images to 3D images after image registering in Xeleris Workstaion of Hawkeye 4. Results & Conclusion: By using Volumetrix Suite program, we're able to acquire more accurate anatomical informations with 3D rendering which can distinguish both location and range of focals in Infinia Hawkeye 4. Thus, the result of utilizing this program indicate that nuclear medicine anatomical images can be improved by providing more diagnostic imformations produced by its program.

  • PDF

Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT (4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석)

  • Cho, Byung-Chul;Park, Sung-Ho;Park, Hee-Chul;Bae, Hoon-Sik;Hwang, Hee-Sung;Shin, Hee-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

The Dose and Risk Reduction from Adoption of Automatic mA Control in 4D CT Scans (자동전류조절기능을 사용한 4D CT 촬영시 선량 및 위험도 저감 효과)

  • Ko, Young Eun;Je, Hyoung Uk;Hwang, Yeon;Park, Sung Ho
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • In this study, the reduction of dose and risk was evaluated from using automatic mA control in 4D CT scan of patients whose organ movement was considered for gated radiotherapy. The organ doses, CTDI, effective doses from 4D CT with and without using automatic mA control were evaluated using CT-Expo program for each 10 patients of liver and lung cancer, and the risk of exposure induced death and loss of life expectancy were evaluated using PCXMC program. It was founded that there were 26.8%, and 15.5% dose reduction in organ doses and CTDI for liver and lung cancer patients and 16.5% and 19.8% risk reduction in liver and lung cancer patients. The organ doses and effective doses were evaluated for the parameter of each patient used in CT scans, and risks considering age and gender could be evaluated. It was founded that there were 21.2% dose reduction and 18.2% risk reduction in 4D CT scan using AEC for liver and lung cancer patients.

The Usefulness of Three-Dimensional Imaging with Spiral CT for Evaluation of the Upper Airway Lesions (상부기도병변의 평가에 있어 나선식컴퓨터단층촬영술을 이용한 3차원적 영상의 유용성)

  • 김진환;김현웅;소상훈;노영수;임현준;윤대영
    • Korean Journal of Bronchoesophagology
    • /
    • v.4 no.1
    • /
    • pp.43-51
    • /
    • 1998
  • Background: Three-dementional imaging with spiral CT(3D spiral CT) is a well established imaging modality which has been investigated in various clinical settings. However the 3D spiral CT in upper airway disease is rarely reported and its results are still obscure. Objectives: To access the usefulness of 3D spiral CT imaging in patients with upper airway diseases. Materials and Methods We performed 3D spiral CT in fourteen patients In whom upper airway diseases were clinically suspected. Nine of these patients had upper airway stenosis, two had laryngeal cartilage fracture, and three had laryngo-hypopharyngeal cancer. For evaluation of location and extent of the lesions, we compared the findings of 3D imaging with those of air tracheogram, conventional 2D CT images, endoscopic and operative findings. Results: In case of stenosis, 3D spiral CT provide significant useful information, particularly the site and length of the stenotic segment. But, it was difficult to define the fracture of the laryngeal framework and to detect the cartilagenous invasion by head and neck cancer using the 3D imaging. Conclusion : The 3D spiral CT was an useful adjunctive method to assess some kind of upper airway disease but not in others. So, we should compare the findings of 3D images with those of other diagnostic tools for accurate diagnosis of the upper airway disease.

  • PDF

Comparison of Noise and Doses of Low Dose and High Resolution Chest CT for Automatic Tube Current Modulation and Fixed Tube Current Technique using Glass Dosimetry (유리선량계를 이용한 관전류자동조절기법과 고정관전류기법에서 저선량 및 고해상 흉부CT의 노이즈 및 선량 비교)

  • Park, Tae Seok;Han, Jun Hee;Jo, Seung Yeon;Lee, Eun Lim;Jo, Kyu Won;Kweon, Dae Cheol
    • Journal of Radiation Industry
    • /
    • v.11 no.3
    • /
    • pp.131-137
    • /
    • 2017
  • To compare the radiation dose and image noise of low dose computed tomography (CT) and high resolution CT using the fixed tube current technique and automatic tube current modulation (CARE Dose 4D). Chest CT and human anthropomorphic phantom were used the RPL (radiophotoluminescence) dosimeters. For image evaluation, standard deviation of mean CT attenuation coefficient and CT attenuation coefficient was measured using ROI analysis function. The effective dose was calculated using CTDIvol and DLP. CARE Dose 4D was reduced by 74.7% and HRCT by 64.4% compared to the fixed tube current technique in low dose CT of chest phantom. In CTDIvol and DLP, the dose of CARE Dose 4D was reduced by fixed tube current technique. For effective dose, CARE Dose 4D was reduced by 47% and HRCT by 46.9% compared to the fixed tube current method, and the dose of CARE Dose 4D was significantly different (p<.05). Noise in the image was higher than that in the fixed tube current technique. Noise difference in the image of CARE Dose 4D in low dose CT was significant (p<.05). The low radiation dose and the noise difference of the CARE Dose 4D were compared with the fixed tube current technique in low dose CT and HRCT using chest phantom. The radiation doses using CARE Dose 4D were in accordance with the national and international dose standards. CARE Dose 4D should be applied to low dose CT and HRCT for clinical examination.

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.

The Study of Dose Variation and Change of Heart Volume Using 4D-CT in Left Breast Radiation Therapy (좌측 유방 방사선치료 시 4D-CT를 이용한 심장의 체적 및 선량변화에 대한 연구)

  • Park, Seon Mi;Cheon, Geum Seong;Heo, Gyeong Hun;Shin, Sung Pil;Kim, Kwang Seok;Kim, Chang Uk;Kim, Hoi Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2013
  • Purpose: We investigate the results of changed heart volume and heart dose in the left breast cancer patients while considering the movements of respiration. Materials and Methods: During the months of March and May in 2012, we designated the 10 patients who had tangential irradiation with left breast cancer in the department of radiation Oncology. With acquired images of free breathing pattern through 3D and 4D CT, we had planed enough treatment filed for covered up the whole left breast. It compares the results of the exposed dose and the volume of heart by DVH (Dose Volume histogram). Although total dose was 50.4 Gy (1.8 Gy/28 fraction), reirradiated 9 Gy (1.8 Gy/5 Fraction) with PTV (Planning Target Volume) if necessary. Results: It compares the results of heart volume and heart dose with the free breathing in 3D CT and 4D CT. It represents the maximum difference volume of heart is 40.5%. In addition, it indicated the difference volume of maximum and minimum, average are 8.8% and 27.9%, 37.4% in total absorbed dose of heart. Conclusion: In case of tangential irradiation (opposite beam) in left breast cancer patients, it is necessary to consider the changed heart volume by the respiration of patient and the heartbeat of patient.

  • PDF