• Title/Summary/Keyword: 4C model

Search Result 4,618, Processing Time 0.038 seconds

Effects of Specimen Length on Flexural Compressive Strength of Concrete (부재의 길이가 콘크리트의 휨압축강도에 미치는 영향)

  • 김진근;이성태;이태규
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.63-71
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a reinforced concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios (from 1,2,3 and 4) of specimens with compressive strength of 590 kgf/$\textrm{cm}^2$. Results indicate that for the region of h/c <3.0 the reduction in flexural compressive strength with increase of length-to-depth ratios was apparent. A model equation was depth of an equivalent rectangular stress block was larger than that by ACI. It was also founded that the effect of specimen length on ultimate strain was negligible. Finally more general model equation is also suggested.

Pillared clays from natural resources as catalysts for catalytic wet peroxide oxidation: Characterization and kinetic insights

  • Kalmakhanova, Marzhan Seitovna;Diaz de Tuesta, Jose Luis;Kabykenovna, Bakytgul;Gomes, Helder Teixeira
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.186-196
    • /
    • 2020
  • Pillared clays with Zr and Fe/Cu/Zr polycations have been prepared from natural clays found in large deposits of Kazakhstan and assessed as catalysts for the catalytic wet peroxide oxidation (CWPO), using 4-nitrophenol (4-NP) as model compound. The performance of the catalysts was followed by measuring the concentration of 4-NP, H2O2 and the total organic carbon (TOC), considering C4-NP = 5 g L-1, $C_{H_2O_2}$ = 17.8 g L-1, Ccat = 2.5 g L-1, initial pH = 3.0 and T = 50℃. At those selected conditions, the pillared clays showed higher activity than natural clays in the CWPO of 4-NP. The conversion of the model pollutant was complete when Fe/Cu/Zr-PILCs were used, with the TOC removal reaching 78.4% after 24 h with the best Fe/Cu/Zr-PILC. The H2O2, 4-NP and TOC time-evolution was well described by a kinetic model based on TOC lumps in three blocks, considering the initial TOC (corresponding to 4-NP), the production of oxidizable intermediates and the formation of refractory products.

A Time Variable Modeling Study of Vertical Temperature Profiles in the Okjung Lake (옥정호의 연직 수온분포에 관한 시변화 모델 연구)

  • Park, Ok-Ran;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.2 s.98
    • /
    • pp.79-91
    • /
    • 2002
  • A time variable modeling study was performed for seasonal variations of vertical temperature profiles in the Okjung Lake located in upstream of the Sumjin River. Based on the model structure of the US Army Corps of Engineer's CE-QUAL-W2, the lake was divided into 3 branches, 50 longitudinal segments and 49 vertical layers and vertical profiles of water temperature and current velocity were simulated over one year. The model results were calibrated and verified against vertical profiles of water temperature measured every month from March 1998 to February 1999 at 5 different locations. The model results showed a good agreement with the field measurements. The hydrologic balance during this period was validated by comparing the simulated values of surface elevation level with the measured data. There was some discrepancy in July data between the model results and the fleld measurements. This could be attributed partially to the inadequacy of the model to the highly hydrodynamic nature of water body and partially to the lack of accuracy in local atmospheric temperature data during summer monsoon period. The model results have shown that there was no seasonal over-turn in most part of the Okjung Lake, where water temperature maintained above $4^{\circ}C$ over one year. In the upstream shal-low area (depth<20 meter), however, temperature at surface layer fell below $4^{\circ}C$ and water was frozen such that slight over-turn would occur during winter period. From this study, we concluded that the Okjung Lake is oligomictic. This conclusionis significantly different from the general pattern that the lakes located from $20^{\circ}C$ to $40^{\circ}C$ latitude would be warm monomictic. From the examination of simulated current velocity distribution, it was found that the upstream inflows would infiltrate into mesolimnion of the lake during hydrodynamic summer monsoon periods due to the thermal density of water.

FINITE ELEMENT ANALYSIS OF STRESSES AND DEFLECTIONS INDUCED BY FIXED PARTIAL DENTURE USING ENDOSTEAL IMPLANT (골내 임프란트를 이용한 고정성 국소의치 하에서 변위 및 응력에 관한 유한요소법적 분석)

  • Choi, Su-Ho;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.233-248
    • /
    • 1991
  • The purpose of this study was to qunatatively analyze the stress patterns induced in the abutment, superstructure, supporting bone and to determine the deflection of abutment and superstructure by appling occlusal force to natural teeth supported fixed prostheses and implant-supported fixed prostheses. The analysis has been conducted by using the two dimensional finite element method. The implant and natural tooth-supported bridge has a first molar pontic supported by mandibular second bicuspid and implant posterior retainer, which were rigidly(Model A) or flexible(Model B). The natural teeth-supported bridge has a first molar pontic supported by mandibular second bicuspid and second molar, which were rigidly splinted together(Model C). 63.5kg(Load P1) of localized load on central fossa of first molar pontic and 24kg(Load P2) of distributed load on each occlusal surface were applied respectively. 1. The coronal portion of premolar pontic and posterior abutment in fixed partial denture deflected inferiorly in order of Model B, Model C and Model A under Load P1 and Load P2. 2. Mesial displacement of the coronal portion of premolar showed in Model A, Model B and Model C under Load P1, but mesial displacement of that in Model B and distal displacement of that in Model A and Model C showed under Load P2. 3. Mesial displacement of the coronal portion of the pontic and distal displacement of the coronal portion of posterior abutment showed in Model A, Model B and Model C under Load P1 and Load P2. Displacement in the case of Model B was greater than that of Model A and Model C. 4. In the case Model A under Load P1 and Load P2, high stress apically was concentrated in the mesiocervical portion of the posterior abutment than in the disto-cervical portion of the premolar. 5. In the case of Model B under Load P1 and Load P2 high stress was concentrated in the case of the premolar than in that of posterior abutment and high stress especially was concentrated in the connected portion of pontic and posterior abutment. 6. In the case of Model C under Load P1 and Load P2, high stress was concentrated in the distal area of the cornal portion of premolar and the mesial area of the coronal portion of posterior abutment, and stress pattern was anteroposterially symmetric around the pontic. 7. Load P1 and Load P2 compared, stress magnitude was different but stress pattern was similar in Model A, Model B and Model C. 8. Under Load P1 and P2, stress magnitude in the mesial distal portion and the portion of root apex of the posterior abutment was in order of Model B, Model A and Model C.

  • PDF

Modeling the Density and Hardness of AA2024-SiC Nanocomposites

  • Jeon, A-Hyun;Kim, Hong In;Sung, Hyokyung;Reddy, N.S.
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • An artificial neural network (ANN) model is developed for the analysis and simulation of correlation between flake powder metallurgy parameters and properties of AA2024-SiC nanocomposites. The input parameters of the model are AA 2024 matrix size, ball milling time, and weight percentage of SiC nanoparticles and the output parameters are density and hardness. The model can predict the density and hardness of the unseen test data with a correlation of 0.986 beyond the experimental data. A user interface is designed to predict properties at new instances. We have used the model to simulate the individual as well as the combined influence of parameters on the properties. Moreover, we have analyzed the calculated results from the powder metallurgical point of view. The developed model can be used as a guide for further composite development.

Estimating the Change of Potential Forest Distribution and Carton Stock by Climate Changes - Focused on Forest in Yongin-City - (기후변화에 따른 임상분포 변화 및 탄소저장량 예측 - 용인시 산림을 기반으로 -)

  • Jeong, Hyeon yong;Lee, Woo-Kyun;Nam, Kijun;Kim, Moonil
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.177-188
    • /
    • 2013
  • In this research, forest cover distribution change, forest volume and carbon stock in Yongin-city, Gyeonggi procince were estimated focused on the forest of Yongin-City using forest type map and HyTAG model in relation to climate change. Present forest volume of Yongin-city was estimated using the data from $5^{th}$ Forest Type Map and Korean National Forest Inventory (NFI). And for the future 100 years potential forest distribution by 10-year interval were estimated using HyTAG model. Forest volume was also calculated using algebraic differences form of the growth model. According to the $5^{th}$ Forest Type Map, present needleleaf forest occupied 37.8% and broadleaf forest 62.2% of forest area. And the forest cover distribution after 30 years would be changed to 0.13% of needleleaf forest and 99.97% of broadleaf forest. Finally, 60 years later, whole forest of Yongin-city would be covered by broad-leaf forest. Also the current forest carbon stocks was measured 1,773,862 tC(56.79 tC/ha) and future carbon stocks after 50 years was predicted to 4,432,351 tC(141.90 tC/ha) by HyTAG model. The carbon stocks after 100 years later was 6,884,063 tC (220.40 tC/ha). According to the HyTAG model prediction, Pinus koraiensis, Larix kaempferi, Pinus rigida, and Pinus densiflora are not suitable to the future climate of 10-year, 30-year, 30-year, and 50-year later respectively. All Quercus spp. was predicted to be suitable to the future climate.

Viscerotropic growth pattern of Leishmania tropica in BALB/c mice is suggestive of a murine model for human viscerotropic leishmaniasis

  • Mahmoudzadeh-Niknam, Hamid;Kiaei, Simin Sadat;Iravani, Davood
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.4
    • /
    • pp.247-253
    • /
    • 2007
  • Leishmania (L.) tropica is a causative agent of cutaneous leishmaniasis, and occasionally of visceral or viscerotropic leishmaniasis in humans. Murine models of Leishmania infection have been proven to be useful for elucidation of mechanisms for pathogenesis and immunity in leishmaniasis. The aim of this study was to establish a murine model for human viscerotropic leishmaniasis, and the growth pattern of L. tropica was studied in different tissues of BALB/c mice in order to find out whether the parasite visceralizes in this murine model. L. major was used as a control as this species is known to cause a progressive infection in BALB/c mice. L. tropica or L. major was injected into the footpad of mice, and thickness of footpad, parasite loads in different tissues, and the weight of the spleen and lymph node were determined at different intervals. Results showed that L. tropica visceralizes to the spleen and grows there while its growth is controlled in footpad tissues. Dissemination of L. tropica to visceral organs in BALB/c mice was similar to the growth patterns of this parasite in human viscerotropic leishmaniasis. The BALB/c model of L. tropica infection may be considered as a good experimental model for human diseases.

Development of Multi-Components Model of Cement Hydration

  • Wang, Xiao-Yong;Lee, Han-Seung;Gyeong, Je-Un;Park, Gi-Bong
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2007.07a
    • /
    • pp.129-137
    • /
    • 2007
  • This paper presents a numerical model which can predict degree of hydration of cement mineral component, such as $C_{3}S$, $C_{2}S$, $C_{3}A$, $C_{4}AF$ and microstructure of hydrating cement as a function of water to cement ratio, cement particle size distribution, cement mineral components and temperature. In this model cement particles are parked randomly in cell space and hydration process is described using a multi-component integrated kinetic model. The simulation result of degree of hydration of cement mineral component agrees well with experiment result. The content of cement hydration product, such as CSH and CH can be obtained as an accompanied result during hydration process. By introducing of equal-area projection method, water withdrawl mechanism and contact area among cement particles can be considered in detail. By using proposed method, pore size distribution of hydrating cement is predicted.

  • PDF

Development of Multi-Components Model of Cement Hydration

  • WangXiaoYong
    • Cement Symposium
    • /
    • s.34
    • /
    • pp.129-137
    • /
    • 2007
  • This paper presents a numerical model which can predict degree of cement mineral component, such as $C_3S$, $C_2S$, $C_3A$, $C_4AF$ and microstructure of hydrating cement as a function of water to cement ratio, cement particle size distribution, cement mineral components and temperature. In this model cement particles are parked randomly in cell space and hydration process is described using a multi-component intergrated kinetic model. The simulation result of degree of hydration of cement mineral component agrees well with experiment result. The content of cement hydration product, such as CSH and CH can be obtained as an accompanied result during hydration process. By introducing of equal-area projection method, water withdrawl mechanism and contact area among cement particles can be considered in detail. By using proposed method, pore size distribution of hydrating cement is predicted.

  • PDF