• Title/Summary/Keyword: 450 mm 웨이퍼 시스템

Search Result 5, Processing Time 0.024 seconds

Development of Real-Time Fault Monitoring and Detection System for Next Generation Fab (차세대 반도체 공정을 위한 실시간 수율관리 시스템 아키텍처 구축에 대한 연구)

  • Park, You-Jin;Park, Young-Soo;Hur, Sun;Lee, Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.555-558
    • /
    • 2010
  • 차세대 반도체 산업은 제조공정의 미세화, 복잡화, 다단계화 등이 심화되고 이로 인해 제조원가의 절감을 위한 단위 Wafer당 보다 많은 칩을 생산할 수 있는 450mm 웨이퍼의 도입을 반드시 필요로 한다. 본 논문에서는 클러스터 툴을 주로 사용하는 450mm 웨이퍼 수율관리 개선 시스템의 구현방향과 상세 기능과 각 모듈에 대한 연구를 수행하였으며, 450mm 웨이퍼 생산체제 하에서 필요한 수율관리시스템인 RTFMD 시스템을 제안 하였다.

  • PDF

Development of Cluster Tool Dispatching Algorithm for Next Generation Wafer Production System (차세대 웨이퍼 생산시스템을 위한 클러스터 툴 디스패칭 알고리즘 개발)

  • Hur, Sun;Lee, Hyun;Park, Eu-Gene
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.792-796
    • /
    • 2010
  • 차세대 반도체 공정인 450mm 웨이퍼 생산 환경의 가장 큰 특징은 반도체 생산의 전 공정에 대한 완전 자동화이다. 이러한 완전 자동화는 작업자의 공정개입을 불가능하게 하고 개별 웨이퍼의 중요도를 크게 증가시키며 전체 반도체 생산 공정에 대한 견고한 디스패칭 시스템을 필요로 한다. 또한, 차세대 반도체 공정의 디스패칭 시스템은 개별 웨이퍼에 대한 실시간 모니터링과 데이터 수집이 가능해야 하며, 수집된 반도체 공정의 정보를 반영한 실시간 디스패칭이 가능해야 한다. 본 연구에서는 차세대 반도체 환경인 450mm 웨이퍼 생산 환경에서 중요한 역할을 하는 클러스터 툴에 대해 분석하고 클러스터 툴에서 웨이퍼의 작업순서를 결정할 수 있는 디스패칭 알고리즘을 제안한다.

  • PDF

Plasma Uniformity Numerical Modeling of Geometrical Structure for 450 mm Wafer Process System (450 mm 웨이퍼 공정용 System의 기하학적 구조에 따른 플라즈마 균일도 모델링 분석)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.190-198
    • /
    • 2010
  • Asymmetric model for plasma uniformity by Ar and $CF_4$ was modeled by the antenna structure, the diameter of chamber, and the distance between source and substrate for the development of plasma equipment for 450 mm wafer. The aspect ratio of chamber was divided by diameter, distance from substrate, and pumping port area. And we found the condition with the optimized plasma uniformity by changing the antenna structure. The drift diffusion and quasi-neutrality for simplification were used, and the ion energy function was activated for the surface recombination and etching reaction. The uniformity of plasma density on substrate surface was improved by being far of the distance between substrate wall and chamber wall, and substrate and plasma source. And when the antenna of only 2 turns was used, the plasma uniformity can improve from 20~30% to 4.7%.

A Study on the Development of Wafer Notch Aligner (노치형 웨이퍼 정렬기 개발에 관한 연구)

  • Na, Won-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.412-418
    • /
    • 2009
  • This study aims to develop a system that enables 20 to 25 wafers to be automatically aligned at the position of the corresponding serial number and facilitates the checkout of wafer processing by sensing them before and after semiconductor processing. It also suggests compensation algorithm and stepper motor control algorithm that carefully align notches. This study minimizes the rate of occurrence by adopting materials of which the surface has proper coefficient of friction when wafers are rotating and that do not rarely produce particles. This study completed the development of a slip resistance apparatus and carried out performance tests through mathematical verification. This system is expected to improve semiconductor yield due to anti-pollution technology in semiconductor processing and can be selectively applied to a large size wafer over 450mm in the future.

  • PDF

A Real-Time Scheduling System Architecture in Next Generation Wafer Production System (차세대 웨이퍼 생산시스템에서의 실시간 스케줄링 시스템 아키텍처)

  • Lee, Hyun;Hur, Sun;Park, You-Jin;Lee, Gun-Woo;Cho, Yong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • In the environment of 450mm wafers production known as the next-generation semiconductor production process, one of the most significant features is the full automation over the whole manufacturing processes involved. The full automation system for 450mm wafer production will minimize the human workers' involvement in the manufacturing process as much as possible. In addition, since the importance of an individual wafer processing increases noticeably, it is necessary to develop more robust scheduling systems in the whole manufacturing process than so ever. The scheduling systems for the next-generation semiconductor production processes also should be capable of monitoring individual wafers and collecting useful data on them in real time. Based on the information gathered from these processes, the system should finally have a real-time scheduling functions controlling whole the semiconductor manufacturing processes. In this study, preliminary investigations on the requirements and needed functions for constructing the real time scheduling system and transforming manufacturing environments for 300mm wafers to those of 400mm are conducted and through which the next generation semiconductor processes for efficient scheduling in a clustered production system architecture of the scheduler is proposed. Our scheduling architecture is composed of the modules for real-time scheduling, the clustered production type supporting, the optimal scheduling and so on. The specifications of modules to define the major required functions, capabilities, and the relationship between them are presented.