• Title/Summary/Keyword: 4-inch silicon wafer suspension

Search Result 6, Processing Time 0.019 seconds

Switched-voltage control of electrostatic suspension system

  • Woo, Shao-Ju;Jeon, Jong-Up;Higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.401-404
    • /
    • 1996
  • A new method for the electrostatic suspension of disk-shaped objects is proposed which is based on a switched-voltage control scheme. It operates according to a relay feedback control and deploys only a single high-voltage power supply capable of delivering a dc voltage of positive and/or negative polarity. In addition to the unique feature that no high-voltage amplifiers are needed, this method provides a remarkable system simplification relative to conventional methods. It is shown that despite the inherent limit cycle property of relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping. In this paper, the functional principle of the switched voltage control scheme, numerical analysis, stator electrode design, and a nonlinear dynamic model of the suspension system are described. Experimental results will be presented for a 4-inch silicon wafer that clearly reveal the capability of the proposed control structure to suspend the wafer stably at an airgap length of 50 .mu.m.

  • PDF

Electrostatic Suspension System of Silicon Wafer using Relay Feedback Control (릴레이 제어법을 이용한 실리콘 웨이퍼의 정전부상에 관한 연구)

  • 전종업;이상욱;정일진;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.969-974
    • /
    • 2003
  • A simple and cost-effective method for the electrostatic suspension of thin plates like silicon wafers is proposed which is based on a switched voltage control scheme. It operates according to a relay feedback control and deploys only a single high-voltage power supply that can deliver a dc voltage of positive and/or negative polarity. This method possesses the unique feature that no high-voltage amplifiers are needed which leads to a remarkable system simplification relative to conventional methods. It is shown that despite the inherent limit cycle property of the relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping origination from the air between the electrodes and levitated object. Using this scheme, a 4-inch silicon wafer was levitated stably with airgap variation decreasing down to 1 $\mu\textrm{m}$ at an airgap of 100 $\mu\textrm{m}$

  • PDF

Electrostatic Suspension System of Silicon Wafer using Relay Feedback Control (릴레이 제어법을 이용한 실리콘 웨이퍼의 정전부상에 관한 연구)

  • Lee, Sang-Uk;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.56-64
    • /
    • 2005
  • A simple and cost-effective method for the electrostatic suspension of thin plates like silicon wafers is proposed which is based on a switched voltage control scheme. It operates according to a relay feedback control and deploys only a single high-voltage power supply that can deliver a DC voltage of positive and/or negative polarity. This method possesses the unique feature that no high-voltage amplifiers are needed which leads to a remarkable system simplification relative to conventional methods. It is shown that despite the inherent limit cycle property of the relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping origination from the air between the electrodes and levitated object. Using this scheme, a 4-inch silicon wafer was levitated stably with airgap variation decreasing down to $1 {\mu}m$ at an airgap of $100{\mu}m$.

Improved electrode pattern design for lateral force increase in electrostatic levitation system

  • Woo, Shao-Ju;Jeon, Jong-Up;higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.311-314
    • /
    • 1996
  • In contactless disk handling systems based on electrostatic suspension in which the stator is to be transferred, the limited stiffness in lateral direction severely restricts the achievable translational acceleration. In existing stator electrode pattern designs, the magnitude of the lateral force is determined by the magnitude of the control voltages which are applied to the individual electrodes to levitate the disk stably. As a result, the lateral force cannot be set arbitrarily. A new stator electrode pattern is presented for the electrostatic levitation of disk-shaped objects, in particular silicon wafers and aluminum hard disks, which allows the lateral forces to be controlled independently from the levitation voltages. Therefore, greater lateral forces can be obtained, compared with the existing stator designs. Experimental results will be presented for a 4-inch silicon wafer that clearly reveal the increased lateral stiffness by using the proposed stator electrode compared to the conventional electrode pattern.

  • PDF

Self-Sensing Electrostatic Suspension System (자가 검출 방식을 이용한 정전 부상 시스템)

  • 정학근;최창환;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.454-461
    • /
    • 2000
  • Electrostatic suspension offers an advantage of directly suspending various materials such as conductive materials, semiconductors and dielectric materials without any mechanical contacts. This is a specific feature compared with electromagnetic suspension which can suspend only ferro-magnetic material. In general, the electrostatic suspension systems require position sensors for stabilizing the suspended object. Therefore, a lot of displacement sensors and a switching circuit are required for moving the object through a long distance. In order to circumvent this problem, this paper proposes a self-sensing method which can provide the gap displacement between electrodes and suspended object without external sensors. Moreover a simple on-off controller is presented for stabilization. Experimental validation of the proposed scheme has been performed through the successful levitation of a 4-inch silicon wafer.

  • PDF

Self-assembly of Fine Particles Applied to the Production of Antireflective Surfaces

  • Kobayashi, Hayato;Moronuki, Nobuyuki;Kaneko, Arata
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 2008
  • We introduce a new fabrication process for antireflective structured surfaces. A 4-inch silicon wafer was dipped in a suspension of 300-nm-diameter silica particles dispersed in a toluene solution. When the wafer was drawn out of the suspension, a hexagonally packed monolayer structure of particles self-assembled on almost the complete wafer surface. Due to the simple process, this could be applied to micro- and nano-patterning. The self-assembled silica particles worked as a mask for the subsequent reactive ion etching. An array of nanometer-sized pits could be fabricated since the regions that correspond to the small gaps between particles were selectively etched off. As etching progressed, the pits became deeper and combined with neighboring pits due to side-etching to produce an array of cone-like structures. We investigated the effect of etching conditions on antireflection properties, and the optimum shape was a nano-cone with height and spacing of 500 nm and 300 nm, respectively. This nano-structured surface was prepared on a $30\;{\times}\;10-mm$ area. The reflectivity of the surface was reduced 97% for wavelengths in the range 400-700 nm.