• Title/Summary/Keyword: 4-Hydroxybenzaldehyde

Search Result 47, Processing Time 0.021 seconds

Bioassay-Guided Isolation and Identification of Compounds from Arecae Pericarpium with Anti-inflammatory, Anti-oxidative, and Melanogenesis Inhibition Activities

  • Indriana, Amelia;Lee, Kyoung Jin;Kim, Yeong Shik
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2016
  • This study describes the anti-inflammatory, anti-oxidant, and melanogenesis inhibition activities of methanol extract and various organic solvent fractions of Arecae Pericarpium. We examined the inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells, 1,1-diphenyl-2-picrylhydrazine (DPPH) scavenging activity, mushroom tyrosinase inhibition activity and melanin contents. The study showed that, among all tested fractions, methylene chloride fraction showed the strongest inhibition of LPS-induced NO production in RAW 264.7 cells ($IC_{50}$ value $8.89{\mu}g/mL$) and DPPH radical scavenging activity ($EC_{50}$ value $21.39{\mu}g/mL$). Methylene chloride and ethyl acetate fractions similarly inhibited mushroom tyrosinase activity. Methanol extract exhibited strongest reduction of melanin content in B16F10 melanoma cells. Based on the bioactivity assay results, methylene chloride and ethyl acetate fractions were further separated. Eight phenolic compounds were isolated, which are dimeric syringol (1), catechol (2), 4-hydroxybenzaldehyde (3), vanillin (4), 4-hydroxyacetophenone (5), apocynin (6), protocatechuic acid (7) and 4-hydroxybenzoic acid (8). Among the isolated compounds tested, catechol showed the strongest inhibition of LPS-induced NO production in RAW 264.7 cells. Catechol also showed the concentration-dependent NF-${\kappa}B$ inhibition activity. Arecae Pericarpium might have potentials to be developed as anti-inflammatory agent or dermatological product for skin-whitening agent.

Phenolic Compounds from the Flower Buds of Camellia japonica

  • Cho, Jeong-Yong;Ryu, Hyun-Jung;Ji, Soo-Hyun;Moon, Jae-Hak;Jung, Kyung-Hee;Park, Keun-Hyung
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.766-770
    • /
    • 2009
  • Hot water extracts of Camellia japonica flower buds were found to have the higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than the other solvent extracts. Five phenolic compounds were isolated and purified from the ethyl acetate soluble-neutral fraction of hot water extracts by Sephadex LH-20 column chromatography and octadecyl silane-high performance liquid chromatography using the guided assay of DPPH radical scavenging. Based on mass spectrometer and nuclear magnetic resonance, the isolated compounds were identified as p-hydroxybenzaldehyde (1), vanillin (2), dehydroxysynapyl alcohol (3), 7S,7'S,8R,8'R-icariol $A_2$ (4), and (-)-epicatechin (5). Four compounds (1-4) except for 5 were newly identified in this plant. Their DPPH radical scavenging activities as 50% scavenging concentration decreased in order to 5 $(20\;{\mu}M)>{\alpha}-tocopherol$ $(29\;{\mu}M)>4$ $(67\;{\mu}M)>3$ $(72\;{\mu}M)>1=2$ ($>250\;{\mu}M$). These results indicate that the antioxidant effect of the hot water extract of C. japonica flower buds may partially due to 5 isolated phenolic compounds.

Synthesis and Characterization of Mn(Ⅲ) Chloro Complexes with Salen-Type Ligands (Mn(Ⅲ) Chloro-Salen형 리간드 착물의 합성과 특성)

  • Byeon, Jong Cheol;Han, Chung Hun;Park, Yu Cheol;Lee, Nam Ho;Baek, Jong Seok
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.194-204
    • /
    • 2002
  • Aseries of novel salen-type complexes {[Mn(III)($L_{acn}$)CI]: n=1~11} containing CI- ion were obtained by reactions of the Mn(CH$_3$COO)$_2$· 4H$_2$O with the potentially tetradentate compartmental ligand {$H$_2$L_{acn}$} prepared by condensation the of one mole of diamine {ethylenediamine, 1,3-propnediamine, o-phenylenediamine and 2,2-dimethyl-1,3-propanediamine} with two moles of aldehyde {alicylaldehyde, 5-chloro-salicylaldehyde, 3,5-dichlorosalicylaldethyde, and 3,5-di-tert-butyl-2-hydroxy-benzaldehyde} in a methanol solution. The resulting salen-type lignds and their Mn(III) complexes were identified and characterized by elemental analysis, conductivity, themogravimetry and UV-VIS, IR and NMR spectroscopy.

Characterization and distribution of phenolics in carrot cell walls

  • Kang, Yoon-Han
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.134.1-134
    • /
    • 2003
  • The purpose of this study was to investigate the release of p-hydroxybenzoic acid and other compounds from cell wall materials(CWM) and their cellulose fraction from carrot with chemical and enzymatic hydrolysis. To investigate this effect on cell wall chemistry of carrot, alcohol insoluble residue(AIR) of CWM were prepared and were extracted sequentially with water, imidazole, CDTA(-1, -2), Na$_2$CO$_3$(-1, -2), KOH(0.5, 1.0 and 4M), to leave a residue. These were analysed for their carbohydrate and phenolic acids composition. Arabinose and galactose were the main noncellulosic sugars. Phenolics esterified to cell walls in carrot were found to consist primarily of p-hydroxybenzoic acid with minor contribution from vanillin, ferulic acid and p-hydroxybenzaldehyde. p-Hydroxybenzoic acid was quite strongly bound to the cell wall. The contents of p-hydroxybenzoic acid in 0.5M KOH, Na$_2$CO$_3$-2, IM KOH, and ${\alpha}$-cellulose were 2,097, 1,360, 1,140, and 717 $\mu\textrm{g}$/g AIR from CWM, respectively. Alkali labile unknown aromatic compound(C$\sub$7/H$\sub$10/O$_2$) was found in ${\alpha}$ -cellulose hydrolyzate digested with driselase and cellulase. This compound was also found in hydrolyzate of 2 M trifluoroacetic acid at 120$^{\circ}C$ for 2 hours. Driselase treatment solubilized only 46.6 $\mu\textrm{g}$/g of the p-hydroxybenzoic acid from carrot AIR. These results indicate that p-hydroxybenzoic acid was associated with neutral polysaccharides, long chain galactose and branched arabinan from graded alcohol precipitation.

  • PDF

Increased Tolerance to Furfural by Introduction of Polyhydroxybutyrate Synthetic Genes to Escherichia coli

  • Jung, Hye-Rim;Lee, Ju-Hee;Moon, Yu-Mi;Choi, Tae-Rim;Yang, Soo-Yeon;Song, Hun-Suk;Park, Jun Young;Park, Ye Lim;Bhatia, Shashi Kant;Gurav, Ranjit;Ko, Byoung Joon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.776-784
    • /
    • 2019
  • Polyhydroxybutyrate (PHB), the most well-known polyhydroxyalkanoate, is a bio-based, biodegradable polymer that has the potential to replace petroleum-based plastics. Lignocellulose hydrolysate, a non-edible resource, is a promising substrate for the sustainable, fermentative production of PHB. However, its application is limited by the generation of inhibitors during the pretreatment processes. In this study, we investigated the feasibility of PHB production in E. coli in the presence of inhibitors found in lignocellulose hydrolysates. Our results show that the introduction of PHB synthetic genes (bktB, phaB, and phaC from Ralstonia eutropha H16) improved cell growth in the presence of the inhibitors such as furfural, 4-hydroxybenzaldehyde, and vanillin, suggesting that PHB synthetic genes confer resistance to these inhibitors. In addition, increased PHB production was observed in the presence of furfural as opposed to the absence of furfural, suggesting that this compound could be used to stimulate PHB production. Our findings indicate that PHB production using lignocellulose hydrolysates in recombinant E. coli could be an innovative strategy for cost-effective PHB production, and PHB could be a good target product from lignocellulose hydrolysates, especially glucose.

Anti-inflammatory Action of Phenolic Compounds from Gastrodia elata Root

  • Lee, Ji-Yun;Jang, Young-Woon;Kang, Hyo-Sook;Moon, Hee;Sim, Sang-Soo;Kim, Chang-Jong
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.849-858
    • /
    • 2006
  • Previous screening of the pharmacological action of Gastrodia elata (GE) root (Orchidaceae) showed that methanol (MeOH) extracts have significant anti-inflammatory properties. The antiinflammatory agents of GE, however, remain unclear. In this experiment, MeOH extracts of GE were fractionated with organic solvents for the anti-inflammatory activity-guided separation of GE. Eight phenolic compounds from the ether (EtOEt) and ethyl acetate (EtOAc) fractions were isolated by column chromatography: 4-hydroxybenzaldehyde (I), 4-hydroxybenzyl alcohol (II), benzyl alcohol (III), bis-(4-hydroxyphenyl) methane (IV), 4(4'-hydroxybenzyloxy)benzyl-methylether (V), 4-hydroxy-3-methoxybenzyl alcohol (VI), 4-hydroxy-3-methoxybenzaldehyde (VII), and 4-hydroxy-3-methoxybenzoic acid (VIII). To investigate the anti-inflammatory and anti-oxidant activity of these compounds, their effects on carrageenan-induced paw edema, arachidonic acid (AA)-induced ear edema and analgesic activity in acetic acid (HAc)-induced writhing response were carried out in vivo; cyclooxygenase (COX) activity, reactive oxygen species (ROS) generation in rat basophilic leukemia (RBL 2H3) cells and 1,1-diphenyl-2-picryl-hydroazyl (DPPH) scavenging activity were determined in vitro. These phenolic compounds not only had anti-inflammatory and analgesic properties in vivo, but also inhibited COX activity and silica-induced ROS generation in a dose-dependent manner. Among these phenolic compounds, compound VII was the most potent anti-inflammatory and analgesic. Compound VII significantly inhibited silica-induced ROS generation and compound VI significantly increased DPPH radical scavenging activity. Compounds I, II and III significantly inhibited the activity of COX-I and II. These results indicate that phenolic compounds of GE are anti-inflammatory, which may be related to inhibition of COX activity and to anti-oxidant activity. Consideration of the structure-activity relationship of the phenolic derivatives from GE on the anti-inflammatory action revealed that both C-4 hydroxy and C-3 methoxy radicals of benzyl aldehyde play an important role in anti-inflammatory activities.

Spectrophotometric Determination of Bisphenol A by Complexation with Ferricyanide and Ferric chloride solution (Ferricyanide와 ferric chloride 혼합액을 사용한 Bisphenol A의 비색 정량법 개발)

  • Kum, Eun-Joo;Ryu, Hee-Young;Kwon, Gi-Seok;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.266-271
    • /
    • 2007
  • Bisphenol A (BPA) has been widely used as a monomer for production of epoxy resins and polycarbonate plastics. The annual production of BPA exceeds 640,000 metric tons in worldwide. BPA, a suspected phenolic endocrine disrupter, is moderately soluble and frequently detected in industrial wastewater. To date, HPLC and GC has been used for BPA analysis. However, HPLC and GC-analysis need high operation lost, experts, and an elaborate pre-treatment of samples, and is difficult to apply on-time and mass analysis. Therefore, simple, mass and rapid detection of BPA in environments is necessary. In the present study, spectrophotometric method of BPA quantification was developed. Based on blue-color product formation with BPA and ferric chloride/ferricyanide under the optimized conditions, the standard curve was acquired $({\lambda}_{750}=0.061\;BPA\;[{\mu}M]+0.07155,\;R^2=0.992)$. Using an established method, the BPA contents in the soil extract, and different water samples and living products, including disposable syringe, cup and plastic tube, were analyzed. The results suggested that the method is useful for BPA determination from different massive samples. Since the BPA metabolites, nontoxic 4-hydroxyacetophenone or 4-hydroxybenzaldehyde, did not form blue-color product, this method is also useful to screen a microorganism for BPA bioremediation.