• Title/Summary/Keyword: 4-Chlorobenzoic Acid

Search Result 20, Processing Time 0.021 seconds

Cloning of Dechlorination Genes Specifying Biodegradation of Toxic 4-Chlorobiphenyl (유독성 4-Chlorobiphenyl의 생분해를 위한 탈염소화 유전자의 클로닝)

  • Kim, Chi-Kyung;Chae, Jong-Chan;Han, Jae-Jin
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.126-131
    • /
    • 1994
  • The pchABCD genes in Pseudomonas sp. DJ-12 speciyin degradation o 4-chlorobiphenyl(4CB) were cloned in Eschericia coli. The cloned cells of E. coli CU1 and CU101 showed to produce 2,3-dihydroxybiphenyl (2,3-DHBP) from 4-chlorobiphenyl by dechlorination, as Pseudomonas so. DJ-12 produced 2,3-DHBP from both biphenyl and 4CB. In particular, E. coli CU101 transformed with the recombinant plasmid of pCU101 revealed dechlorination activity to produce 2,3-DHBP from 4CB without production of 4-chlorobenzoic acid. Therefore, the pcbAB genes (2.2 kb in size) cloned from the chromosome of Pseudomonas sp. DJ-12 were found to have dechlorination activity on 4CB to produce 2,3-DHNP.

  • PDF

Comparison of OH radical generation depending on anatase to rutile ratio of TiO2 nanotube Photocatalyst (Anatase와 Rutile 결정상 비율에 따른 TiO2 nanotube의 OH radical 생성량 비교 연구)

  • Lee, Hyojoo;Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.550-556
    • /
    • 2019
  • This study was carried out to improve the photocatalytic reaction of TiO2 photocatalyst. During the photocatalytic reaction, OH radicals are generated and they have an excellent oxidation capability for wastewater treatment. To evaluate the OH radicals generated according to crystallographic structure of TiO2 nanotubes photocatalyst, a probe compound, 4-Chlorobenzoic acid was monitored to evaluate OH radical. Ultraviolet light was applied for photocatalytic reaction of TiO2. The 4-Chlorobenzoic acid solution was prepared at laboratory. TiO2 nanotube was grown on titanium plate by using anodization method. The annealing temperature for TiO2 nanotube was varied from 400 to 900 ℃ and the crystal forms of the TiO2 nanotube was analyzed. Depending on annealing temperature, TiO2 nanotubes have shown different crystal forms; 100% anatase (0 % rutile), 18.4 % rutile (81.6 % anatase), 36.6 % rutile (63.4 % anatase) and 98.6% rutile (1.4% anatase). As the annealing temperature increases, the rutile ratio increases. OH radical generation from 18.4 % rutile TiO2 nanotube plate was about 3.8 times higher than before annealing and 1.4 times higher than only 100 % anatase-TiO2 nanotube. The efficiency of the 18.4% rutile TiO2 nanotube was the best in comparison to TiO2 nanotube with 18.4 %, 36.6 % and 98.6 % rutile. As a result, photocatalytic ability of 18.4 % rutile-TiO2 nanotube plate was higher than 100 % anatase-TiO2 nanotube plate.

The Influence of Current Flow on OH Radical Generation in a Photocatalytic Reactor of TiO2 Nanotube Plates (전류흐름에 따른 TiO2 nanotube 광촉매의 OH radical 생성량 평가)

  • Kim, Da-Eun;Lee, Yong-Ho;Kim, Dae-Won;Pak, Dae-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.349-356
    • /
    • 2017
  • OH radical generation is one of the common method to evaluate photocatalytic activity. In many of previous studies, only the UV(Ultraviolet) light was applied to test photocatalytic ability of $TiO_2$ nanotubes by studying probe compound(4-Chlorobenzoic acid) concentration change in solution. Also, $TiO_2$ nanotubes were found to show some electrochemical characteristics when the flow of electric current was applied. In this study, the flow of electric current and UV light were applied at the same time to determine whether electrochemical characteristics of $TiO_2$ nanotube plate can give synergetic effect on the photocatalytic activity. $TiO_2$ nanotube was grown on Ti by anodic oxidation to create $TiO_2$ nanotube plate which can be used as a photocatalyst and a electrode that can undergo AOP(Advanced Oxidation Process) for water treatment. Probe compound solution was prepared using 4-chlorobenzoic acid and $H_2O$ as a solvent. NaCl was added to give conductivity to work as electrolyte. As a result, enough level of electric current flow was found to give synergetic photocatalytic effect which can be used for efficient AOP water treatment method.

A Study on the Formation of OH Radical by Metal-supported Catalyst in Ozone-catalytic Oxidation Process (오존촉매산화공정에서 금속 담지촉매에 의한 수산화라디칼 생성연구)

  • Lee, Sun Hee;Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.432-439
    • /
    • 2018
  • Metal catalysts such as Fe, Co, Mn, and Pd supported on the activated carbon (AC) were prepared to improve functional groups for the chemical adsorption and catalytic ozonation. Following ascending orders of the phenol decomposition rate, dissolved ozone decomposition ratio and TOC (total organic carbon) removal from experimental results of advanced oxidation process (AOP) were observed: Fe-AC < AC < Co-AC < Mn-AC < Pd-AC. BET analysis results showed that the physical properties of the metal impregnated activated carbon had no effect on the catalytic ozonation, and the catalytic effect was dependent on the kind of impregnated metal. The ratio of the formed concentration of OH radical to that of ozone (RCT) was measured by using the decomposition outcome of p-chlorobenzoic acid, a probe compound that reacts rapidly with OH radical but slowly with ozone. The measured values of RCT were $5.48{\times}10^{-9}$ and $1.47{\times}10^{-8}$ for the ozone alone and activated carbon processes, respectively, and $2.13{\times}10^{-9}$, $1.51{\times}10^{-8}$, $4.77{\times}10^{-8}$, and $5.58{\times}10^{-8}$ for Fe-AC, Co-AC, Mn-AC, and Pd-AC processes, respectively.

An Investigative Study on the Characterization of Cefaclor Decomposition in UV/H$_2$O$_2$ Process (UV/H$_2$O$_2$공정에 의한 Cefaclor 분해 특성에 관한 기초연구)

  • Cho, Chun-Ki;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1039-1046
    • /
    • 2008
  • The combining process of UV irradiation and H$_2$O$_2$ was used to investigate characteristics of cefaclor decomposition in the aquatic environment. The separate mixing tank was used to minimize the decreasing effective of contact area caused by sampling. Four baffles were installed inside the UV reactor for the complete mixing of the sample and outside of the reactor was wrapped with aluminum foil to protect the emission of photon energy. Production of OH radical was measured using pCBA(p-Chlorobenzoic acid) indirectly and rate constants were withdrawn pseudo-frist order reaction. Optimum condition for the maximum production of OH radical was found to be pH 3, hydrogen peroxide of 5 mmol/L and recirculation rate of 400 mL/min. Pseudo-frist order reaction rate constant was 0.1051 min$^{-1}$. In the optimum condition, cefaclor was completely decomposed within 40 min and rate constant was 0.093 min$^{-1}$. Decomposition by OH radical producted intermediate anions such as chloride, nitrate, sulfite and acetic acid and phenylglycine. After 6 hr most cefaclor was decomposed by UV/H$_2$O$_2$ process and converted to CO$_2$ and H$_2$O, resulting of operation in the decrease of TOC and acetic acid and the disappearance of phenylglycine.

Improvement of 4-chlorobiphenyl degradation bya recombinant strain, pseudomonas sp. DJ12-C

  • Kim, Ji-Young;Kim, Young-Chang;You, Lim-Jai;Lee, Ki-Sung;Ok, Ka-Jong;Hee, Min-Kyung;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 1997
  • Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 isolated from the polluted environment are capable of degrading biphenyl and 4-chlorobiphenyl (4CB) to produce benzoic acid and 4-chlorobenzoic acid (4CBA) respectively, by pcbABCD-encoded enzymes. 4CBA can be further degraded by Pseudomonas sp. DJ-12, but not by Pseudomonas sp P20. However, the meta-cleavage activities of 2, 3-dihydroxybiphenyl (2, 3-DHBP) and 4-chloro-2, 3-DHBP dioxygenases (2, 3-DHBD) encoded by pcbC in Pseudomonas sp. P20 were stronger than Pseudomonas sp. DJ-12. In this study, the pcbC gene encoding 2, 3-DHBD was cloned from the genomic DNA of Pseudomonas sp. P20 by using pKT230. A hybrid plasmid pKK1 was constructed and E. coli KK1 transformant was selected by transforming the pKK1 hybrid plasmid carrying pcbC into E. coli XL1-Blue. By transferring the pKK1 plasmide of E. coli KK1 into Pseudomonas sp. DJ-12 by conjugation, a recombinant strain Pseudomonas sp. P20, Pseudomonas sp. DJ-12, and the recombinant cell assay methods. Pseudomonas sp. DJ12-C readily degraded 4CB and 2, 3-DHBP to produce 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoic acid (HOPDA), and the resulting 4CBA and benzoic acid were continuously catabolized. Pseudomonas sp. DJ12-C degraded 1 mM 4CB completely after incubation for 20 h, but Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 showed only 90% and Pseudomonas sp. DJ-12 had, but its degradation activity to 2, 3-DHBP, 3-methylcatechol, and catechol was improved.

  • PDF

Thermodynamics on the Micellization of Pure Cationic(DTAB, TTAB, CTAB), Nonionic(Tween-20, Tween-40, Tween-80), and Their Mixed Surfactant Systems (순수 양이온성(DTAB, TTAB, CTAB), 비이온성(Tween-20, Tween-40, Tween-80) 및 이들 혼합 계면활성제의 미셀화에 대한 열역학적 연구)

  • Lee, Nam-Min;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.679-687
    • /
    • 2013
  • The critical micelle concentration (CMC) and counter-ion binding constant (B) of the pure cationic surfactants (DTAB, TTAB, CTAB), nonionic surfactants (Tween-20, Tween-40, Tween-80), and their mixed surfactants (TTAB/Tween-20, TTAB/Tween-40, TTAB/Tween-80) in aqueous solutions of 4-chlorobenzoic acid were determined by using the UV/Vis absorbance method and the conductivity method from 284 K to 312 K. Thermodynamic parameters (${\Delta}G^o{_m}$, ${\Delta}H^o{_m}$, and ${\Delta}S^o{_m}$), associated with the micelle formation of those surfactant systems, have been estimated from the dependence of CMC and B values on the temperature and carbon length of surfactant molecules. The calculated values of ${\Delta}G^o{_m}$ are all negative within the measured range but the values of ${\Delta}H^o{_m}$ and ${\Delta}S^o{_m}$ are positive or negative, depending on the length of the carbon chain and surfactant.

Cloning of pcb Genes in Pseudomonas sp.P20 Specifying Degradation of 4-Clorobiphenyl (4-Chlorobiphenyl을 분해하는 Pseudomonas sp. P20의 pcb 유전자군의 클로닝)

  • 남정현;김치경
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 1994
  • Pseudomonas sp. P20 was a bacterial isolate which has the ability to degrade 4-chlorobi- phenyl(4CB) to 4-chlorobenzoic acid via the process of meta-cleavage. The recombinant plasmid pCK1 was constructed by insetting the 14-kb EcoRI fragment of the chromosomal DNA containing the 4CB-degrading genes into the vector pBluescript SK(+). Subsequently, E. coli XL1-Blue was transformed with the hybrid plasmid producing the recombinant E. coli CK1. The recombinant cells degraded 4CB and 2,3-dihydroxybiphenyl(2,3-DHBP) by the pcbAB and pcbCD gene products, respectively. The pcbC gene was expressed most abundantly at the late exponential phase in E. coli CK1 as well as in Pseudomonas sp. P20, and the level of the pcbC gene product, 2,3-DHBP dioxygenase, expressed in E. coli CK1 was about two-times higher than in Pseudomonas sp. P20. The activities of 2,3-DHBP dioxygenase on catechol and 3-methylcatechol were about 26 to 31% of its activity on 2,3-DHBP, but the enzyme did not reveal any activities on 4-methylcatechol and 4-chlorocatechol.

  • PDF

Reaction of Potassium Fluoride with Organic Halogen Compounds. (Part I) Reactions of Potassium Fluoride with Organic Halides, Acids, and Esters in presence of Dimethyl Formamide and their Pyrolytic Decaboxylation in presence of Potassium Fluoride (有機 할로겐 化合物과 弗化加里의 反應 (第1報) 有機 할라이드, 酸 및 에스테르와 弗化加里의 디메칠 호름아마이드 溶媒系反應 및 高溫-脫炭酸-熱分解反應)

  • You Sun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.189-196
    • /
    • 1963
  • Reactions between potassium fluoride with organic halogen-containing carboxylic acids in dimethyl formamide solvent gave a decarboxylation reaction for the case of fluoro carboxylic acids of the type of $CF_3\;COOH,\;C_3F_7COOH,\;and\;C_2F_5COOH,$ whereas an additional partial fluorination together with dimerization reaction occurred for the chlorine containing acids of the type of $CH_2ClCOOH,\;CH_3CHClCOOH, \;CHCl_2COOH\;and\;o-Cl-C_6H_4-COOH.$ The phenyl halides showed no reactivity, but the halides with two electron attracting substituents on the benzene ring gave mainly dimerization reaction. The esters and alcohols gave an usual fluorination reaction. The same reactions in absence of the solvent at the elevated temperature increase the yield of the dimerized product and gave the cyclized product, fluorenone, in case of ο-chlorobenzoic acid. It was found that the fluorination usually precede the decarboxylation reaction by checking the stiochemical sequence of reaction. Catalytic influence of potassium fluoride were discussed and the mechanism of the reaction was considered.

  • PDF

Mixed Micellizations of TTAB with Other Surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) (TTAB와 다른 계면활성제(DTAB, CTAB, Tween-20, Tween-40 및 Tween-80)와의 혼합미셀화에 대한 연구)

  • Lee, Nam-Min;Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.556-562
    • /
    • 2012
  • The critical micelle concentration (CMC) and the counter-ion binding constant (B) for the mixed micellizations of TTAB (tetradecyltrimethylammonium bromide) with other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in aqueous solution of 4-chlorobenzoic acid (0.5 mM) at $25^{\circ}C$ were determined as a function of ${\alpha}_1$ (the overall mole fraction of TTAB) by using the spectrophotometric method and the conductivity method. Various thermodynamic parameters ($X_i$, ${\gamma}_i$, $C_i$, $a_i^M$, ${\beta}$, and ${\Delta}H_{mix}$) were calculated for each mixed surfactant system and compared with the other mixed surfactant systems by means of the equations derived from the nonideal mixed micellar model. The results show that TTAB/DTAB mixed system has a great positive deviation from the ideal mixed micellar model and the other mixed systems have great negative deviations from the ideal mixed model.