• Title/Summary/Keyword: 4 Wheel Driving

Search Result 135, Processing Time 0.024 seconds

Development of Loader with Four Wheel Driving and Four-Type Wheel Steering System (4륜 구동 및 4방식 조향장치를 적용한 로더 개발)

  • Cho, Huyn-Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.71-78
    • /
    • 2004
  • The loader of this study is an agriculture machine for a stock farmer. We has much researched about power train and steering system in order to develop a new stock machine. So, the loader developed in this study has a 4 wheel driving system and a 4-type wheel steering system. Though the technological region is some large and general, these technologies are very important and their technical life may be very long. The power train of the loader is consisted of many units as follows, engine, clutch, transmission, and axles. And, the 4-type wheel steering system is consisted of oil tank, oil pump, steering valve, solenold valve, electronic controller, hydraulic cylinders, and touch sensors. This study shows construction logics of power train and steering system. We could know from many working tests that the developed loader with 4-type steeling system has many advantages when driving in a narrow corral.

  • PDF

Design of a Wheel Test Bed for a Planetary Exploration Rover and Driving Experiment (행성탐사 로버 휠 테스트 베드 설계 및 주행 실험)

  • Kim, Kun-Jung;Kim, Seong-Hwan;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.372-377
    • /
    • 2015
  • In this paper, the consideration factors that affect the actual driving of a rover wheel was examined based on the wheel-terrain model. For the evaluation of driving performance in a real environment, the test bed of the rover wheel consists of the driving part of the wheel and sensing part of the various parameters was designed and assembled. Using the test bed, the preliminary driving experiment concerning the slip ratio, sinkage, and friction force according to the rotational velocity and the shape of the wheel were carried out and evaluated. The wheel test bed and the experiment results are expected to contribute to finding the optimal result in the designing of the wheel shape and the planning of the driving conditions through further study.

Integrated Chassis Control System of a Rear In-wheel Motor Vehicle (후륜 구동 인휠 전기 자동차의 구동 및 현가 통합제어시스템)

  • Kim, Hyundong;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.439-446
    • /
    • 2016
  • An in-wheel motor vehicle is a type of car that is equipped with an electric motor for each wheel. It is possible to acquire vehicle stability through a seperate driving torque control per wheel, since it directly generates the driving torque via the wheel motors. However, the vehicle ride comfort and road holding performance worsen depending on the increase of the wheel weights. In order to compensate for the impaired performance, an integrated chassis control system of the rear in-wheel motor vehicle is proposed. The proposed integrated chassis control system is composed of a driving torque control system, a semi-active suspension system, and an ESC system. According to the vehicle dynamic simulation of an in-wheel motor vehicle equipped with the integrated chassis control system, it is found that the system can improve the driving stability, ride comfort, and driving efficiency of the in-wheel motor vehicle.

Development of Working Tractor with Four-Type Wheel Steering System I(Development of Power Train System) (4방식 조향장치를 적용한 관리 작업차 개발 I(동력전달 시스템 개발))

  • Cho Hyun-Deog
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.66-72
    • /
    • 2005
  • The working tactor of this study, an agriculture machine, is consisted of 4 wheel driving system with gear trains and 4-type wheel steering system. Since technological regions for 4 wheel driving system and 4-type wheel steering system are some large, we divide on two studies on 4 wheel driving system and 4-type wheel steering system This study develops transmission and axle that are very important units for strong working operation because the power of tractor is largely affected by transmission and axle. Even if the development of the power train is some common technology, it is very complicated work and needs many experience know-hows. So, for new given specifications fitted to the working tractor, a kind of new agriculture machine, this study haws out processes that are development of assembly drawing and strength analysis through classical method and CAE software for all internal parts and housing cases.

Development of Working Tractor with Four-Type Wheel Steering System II(Development of Four-Type Wheel Steering System) (4방식 조향장치를 적용한 관리 작업차 개발 II(4방식 조향장치 개발))

  • Cho Hyun-Deog
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.81-86
    • /
    • 2005
  • The agricultural working tractor of this study is equipped with 4 wheel driving system developed in study 1 and 4-type wheel steering system. The wheel steering system has four type of steering methods that are front wheel steering, rear wheel steering, 4 wheel steering with opposite phase, and 4 wheel steering with corresponding phase. This study introduces the hydraulic circuit of the 4-type wheel steering system and the construction of working tractor. Judging from the field test results of the developed working tractor, it is apparent that 4-type wheel steering system has many advantages when driving in a narrow corral.

development of Loader Equipped with 4WD and 4WS (I) (4 Wheel Driving Transmission) (4WD 및 4WS이 가능한 로더 개발(I) (4륜 구동 변속기))

  • 조현덕
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.141-148
    • /
    • 1998
  • A loader is construction & road or agricultural machinery for lifting, moving, and mixing. This study deals with the agricultural mini loader for stock raising farming. The performance of the machine is established by pulling power, working lifting capacity, and minimum circling radius, etc. Also, driving easiness and endurance are very important in manufacturing. Thus, this study has developed the loader with the 4-wheel driving equipment by gear transmission, the 4-wheel steering equipment by power handle steering type, and the equipment making four wheels touch simultaneously on the rugged ground. The developed loader having these functions was very fit in a small cattle shed or a rugged ground. This study is divided into two parts; (I) development of 4WS transmission and (II) construction of the loader by 4WS system and other equipments.

  • PDF

Improvement of the Yaw Motion for Electric Vehicle Using Independent Front Wheel Steering and Four Wheel Driving (독립 전륜 조향 및 4륜 구동을 이용한 전기 차량의 선회 운동 향상)

  • Jang, Jae-Ho;Kim, Chang-Jun;Kim, Sang-Ho;Kang, Min-Sung;Back, Sung-Hoon;Kim, Young-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 2013
  • With the recent advancement of control method and battery technology, the electric vehicle have been researched to replace the conventional vehicle with electric vehicle with the view point of the environmental concerns and energy conservation. An electric vehicle which is equipped with the independent front steering system and in-wheel motors has advantage in terms of control. For example, the different torque which generated by left and right wheels directly can make yaw moment and the independent steering using outer wheel control is able to reduce the sideslip angle. Using of independent steering and driving system, the 4 wheel electric vehicle can improve a performance better than conventional vehicle. In this paper, we consider the method for improving the cornering performance of independent front steering system and in-wheel motor used electric vehicle with the compensated outer wheel angle and direct yaw moment control. Simulation results show that the method can improve the cornering performance of 4 wheel electric vehicle. We also apply the steering motor failure to steer the vehicle turned by the torque difference without steering. This paper describes an independent front steering and driving, consist of three parts; Vehicle Model, Control Algorithm for independent steering and driving and simulation. First, vehicle model is application of TruckSim software for independent front steering and 4 wheel driving. Second, control algorithm describes the reduced sideslip and direct yaw moment method in view of cornering performance. Last is simulation and verification.

A Study on Independent Steering & Driving Control Algorithm for 6WS/6WD Vehicle (6WS/6WD 차량의 독립조향 및 구동 제어알고리즘에 관한 연구)

  • Kim, Chang-Jun;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • Multi-axle driving vehicles that are used in special environments require high driving performance, steering performance, and stability. Among these vehicles, 6WS/6WD vehicles with middle wheels have structural safety by distributing the load and reducing the pitch angle during rapid acceleration and braking. 6WS/6WD vehicles are favored for military use in off road operations because of their high maneuverability and mobility on extreme terrains and obstacles. 6WD vehicles that using in-wheel motor can generate the independent wheel torque without other mechanical parts. Conventional vehicles, however, cannot generate an opposite driving force at each side wheel. Using an independent steering and driving system, six-wheel vehicles can show better performance than conventional vehicles. Using of independent steering and driving system, the 6 wheel vehicle can improve a performance better than conventional vehicle. This vehicle enhances the maneuverability under low speed and the stability at high speed. This paper describes an independent 6WS/6WD vehicle, consists of three parts; Vehicle Model, Control Algorithm for 6WS/6WD and Simulation. First, vehicle model is application of TruckSim software for 6WS and 6WD. Second, control algorithm describes the optimum tire force distribution method in view of energy saving. Last is simulation and verification.

Development of Power Distribution Algorithm for Driving Efficiency Optimization of Independently Driven Vehicle (독립구동 인휠 전기자동차의 주행 효율 최적화를 위한 구동력 분배 알고리즘)

  • Park, J.H.;Song, H.W.;Jeong, H.U.;Park, C.H.;Hwang, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.16-21
    • /
    • 2014
  • The purpose of this paper is to construct a control algorithm for improving the driving efficiency of 4-wheel-drive in-wheel electric vehicles. The main parts of the vehicle were modeled and the input-output relations of signals were summarized using MATLAB/Simulink. A performance simulator for 4-wheel-drive in-wheel electric vehicles was developed based on the co-simulation environment with a commercial dynamic behavior analysis program called Carsim. Moreover, for improving the driving efficiency of vehicles, a torque distribution algorithm, which distributes the torque to the front and rear wheels, was included in the performance simulator. The effectiveness of the torque distribution algorithm was validated by the SOC simulation using the FTP-75 driving cycle.