• Title/Summary/Keyword: 4차원 CAD

Search Result 120, Processing Time 0.022 seconds

Implant Supported Fixed Restoration for Maxillary Edentulism using CAD/CAM Guided Implant Surgery (NobelGuide$^{TM}$) and Immediate Loading (상악 완전 무치악 환자의 CAD/CAM 을 이용한 임플란트 식립(NobelGuide$^{TM}$) 및 즉시하중 후 고정성 보철수복 증례)

  • Huh, Yoon-Hyuk;Yi, Yang-Jin;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.4
    • /
    • pp.423-439
    • /
    • 2012
  • This case report described a technique utilizing a computer-aided design (CAD)/computer-aided machining (CAM) - guided surgical implant placement and prefabricated temporary fixed prosthesis for an immediately loaded restoration. The advantages of CAD/CAM guided implant procedures are flapless, minimally invasive surgery and shorter surgery time. With this technique, less postoperative morbidity and delivery of prosthesis for immediate function would be possible. A patient with an edentulous maxilla received 8 implants in maxilla using CAD/CAM surgical templates. Prefabricated provisional maxillary implant supported fixed prosthesis were connected immediately after implant installation. Provisional prosthesis was evaluated for aesthetics, function during 6 months. Definitive implant supported fixed porcelain fused metal bridges were fabricated.

The Construction of Digital Close Range Photogrammetry System Integrated With CAD for Education (수치영상을 이용한 사면지반 계측시스템 개발(1) - 캐드의 연계를 통한 DCRP 교육용 운용시스템 구축 -)

  • 배상호;주영은
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.399-404
    • /
    • 2002
  • In this study, it was intended to present solution for learners to understand and utilize photogrammetry more easily using economic medium except expensive measuring equipment. For this, 3D point data was analysed by generating event to stereo image on monitor, and input to CAD system automatically. so, real time vector editing and drawing with coordinates measurement were possible. The system was verified, and the monitoring for real construction was performed. so, it is expected to be utilized as a practical use software in related fields.

Formulating 3-dimensional modeling from the orthographic projection drawing using feature recognition technique. (형상인식을 이용한 정사영 도면의 3차원 모델링에 관한 연구)

  • Lee, Seok-Hee;Bahn, Kab-Soo;Lee, Hyoung-Kook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.180-189
    • /
    • 1993
  • In CAD/CAM system, it is required to produce manufacturing information from the deawing output of design system. The most difficult task is to formulate 3-dimentional modeling information utilizing 2-dimentional data. This paper addresses the automatic converting steps of 2-dimentional drawing data to 3-dimentional solid modeling using feature recognition rules as an expert shell. With the standardization of design process and recognition rule as a fundamental steps, the developed system shows a good application tool which can interface the design and manufacturing stage in CAD/CAM system of PC level.

  • PDF

Flexible inspection system using CAD detabase and vision guided coordinate measuring machine (3차원 측정기를이용한 Flexible Inspection System)

  • 조명우;박용길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.16-29
    • /
    • 1993
  • The objective of this research is in the development of a flexible 3-dimensional inspection system for the sculptured surface by integrating the Coordinate Measuring Machine (CMM), CAD database, and vision system. To achieve the proposed flexible inspection system, two research categories are discussed in the study: new inspection planning method includes a new measuring point selection method and various new probe path generation methods. The object recognition and localization process for the unknown surface can be easily carried out by introducing a new concept called "Z-Layer". The experimental results indicate that the developed flexible inspection system, with the proposed algorithm, can be inplemented in real situation.situation.

  • PDF

A Study on the Standard of CAD Drawing in the Water Resources Parts to Support Construction CALS/EC (건설CALS/EC 지원을 위한 수자원 분야 전자도면 표준체계에 관한 연구)

  • Kang, Young Mi;Kang, Joon Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.553-560
    • /
    • 2008
  • As it was developed to korea standard of the CAD Drawing in Construction CALS/EC for the productivity Improvement in Construction Industry and efficiency rising of construction management. it is high time to design the standard system in water resources. The purpose of this study is to establish the strategies for standard system of drawing information in water Resources parts for construction CALS/EC. This study is to analyse the existing construction drawing standards including CMS, CMMS, drawing guideline of a water Resources public institution, ISO, US National CAD Standard, Japanese Standard. As a result of the analysis, this study proposes the prime structure of the water Resources drawing information standard to support construction CALS/EC. For the establishment of standard system in real practice, this study establishes the numbering system to joint the current standard system for a water Resources order institution and to keep construction CALS/EC. In conclusion, the standard system of drawing information is proposed as a fundamental frame to water Resources parts of construction CALS/EC.

Develpment of Automated Stress Intensity Factor Analysis System for Three-Dimensional Cracks (3차원 균열에 대한 자동화된 응력확대계수해석 시스템 개발)

  • 이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.64-73
    • /
    • 1997
  • 솔리드 모델러, 자동요소분할 기법, 4면체 특이요소, 응력확대계수의 해석 기능을 통합하여, 3차원 균열의 응력확대계수를 효율적으로 해석할 수 있는 시스템을 개발하였다. 균열을 포함하는 기하모델을 CAD 시스템을 이용하여 정의하고, 경계조건과 재료 물성치 및 절점밀도 분포를 기하모델에 직접 지정함으로써, 퍼지이론 에 의한 절점발생과 데로우니 삼각화법에 의한 요소가 자동으로 생성된다. 특히, 균열 근방에는 4면체 2차 특이요소를 생성시켰으며, 유한요소 해석을 위한 입력 데이터가 자동으로 작성되어 해석코드에 의한 응력 해석이 수행된다. 해석 후, 출력되는 변위를 이용하여 변위외삽법에 의한 응력확대계수가 자동적으로 계산되어 진다. 본 시스템의 효용성을 확인하기 위해, 인장력을 받는 평판내의 표면균열에 대해 해석하여 보았다.

  • PDF

A Study on Automatic Calculation of Earth-volume Using 3D Model of B-Rep Solid Structure (B-Rep Solid 구조의 3차원 모델을 이용한 토공량 자동 산정에 관한 연구)

  • Kim, Jong Nam;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.403-412
    • /
    • 2022
  • As the 4th industrial revolution is in full swing and next-generation ICT(Information & Communications Technology) convergence technology is being developed, various smart construction technologies are being rapidly introduced in the construction field to respond to technological changes. In particular, since the earth-volume calculation process for site design accounts for a large part of the design cost at the construction site, related researches are being actively conducted to improve the efficiency of the process and accurately calculate the earth-volume. The purpose of this study is to present a method for quickly constructing the topography of a construction site in 3D and efficiently calculating earth-volume using the results. For this purpose, the construction site was constructed as a 3D realistic model using large-scale aerial photos obtained from UAV(Unmanned Aerial Vehicle). At this time, since the constructed 3D realistic model has a surface model structure in which volume calculation is impossible, the structure was converted into a 3D solid model to enable volume calculation. And we devised a methodology to calculate earth-volume based on CAD(Computer-Aided Design and Drafting) using the converted solid model. Automatically calculating earth-volume from the solid model by applying the method. As a result, It was possible to confirm a relative deviation of 1.52% from the calculated earth-volume from the existing survey results. In addition, as a result of comparative analysis of the process time required for each method, it was confirmed that the time required is reduced of 60%. The technique presented in this study is expected to be utilized as a technology for smart construction management, such as periodic site monitoring throughout the entire construction process, as well as cost reduction for earth-volume calculation.

Accuracy Assessment of Feature Collection Method with Unmanned Aerial Vehicle Images Using Stereo Plotting Program StereoCAD (수치도화 프로그램 StereoCAD를 이용한 무인 항공영상의 묘사 정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.257-264
    • /
    • 2020
  • Vectorization is currently the main method in feature collection (extraction) during digital mapping using UAV-Photogrammetry. However, this method is time consuming and prone to gross elevation errors when extracted from a DSM (Digital Surface Model), because three-dimensional feature coordinates are vectorized separately: plane information from an orthophoto and height from a DSM. Consequently, the demand for stereo plotting method capable of acquiring three- dimensional spatial information simultaneously is increasing. However, this method requires an expensive equipment, a Digital Photogrammetry Workstation (DPW), and the technology itself is still incomplete. In this paper, we evaluated the accuracy of low-cost stereo plotting system, Menci's StereoCAD, by analyzing its three-dimensional spatial information acquisition. Images were taken with a FC 6310 camera mounted on a Phantom4 pro at a 90 m altitude with a Ground Sample Distance (GSD) of 3 cm. The accuracy analysis was performed by comparing differences in coordinates between the results from the ground survey and the stereo plotting at check points, and also at the corner points by layers. The results showed that the Root Mean Square Error (RMSE) at check points was 0.048 m for horizontal and 0.078 m for vertical coordinates, respectively, and for different layers, it ranged from 0.104 m to 0.127 m for horizontal and 0.086 m to 0.092 m for vertical coordinates, respectively. In conclusion, the results showed 1: 1,000 digital topographic map can be generated using a stereo plotting system with UAV images.

Development and Application of Instruction Program using 3D Sketching Software for 'Planning for Residential Space' Unit of NCS-based on Interior Design Subject (NCS 실내디자인 과목의 '주거공간 계획하기' 단원에서 3차원 스케치 소프트웨어를 활용한 수업 프로그램 개발 및 적용 효과)

  • Ji, Ae-Hee;Yoo, Hyun-Seok
    • 대한공업교육학회지
    • /
    • v.44 no.2
    • /
    • pp.1-27
    • /
    • 2019
  • In recent years, space planning ability using 3D sketch software is required in the working field of interior design. However, vocational high school do not respond appropriately to changes in the industry, because the class of vocational high school consists of hands-on practical classes and 2D CAD based classes. There is a shortage of 3D sketch software-based instruction programs that can improve students' spatial planning skills. Therefore, this study is to develop instruction program using 3D sketch software for 'Planning for Residential Space' unit of NCS-based on interior design subject and to find out the effect on students' academic achievement by applying to vocational high school class. The 3d sketch software based instructional program developed in this study was developed through four stages of preparation, development, implementation and evaluation according to the PDIE model process. The experimental design model used nonequivalent group posttest-only design in this study. Experiments were conducted on vocational high school students in construction and 9 hours of interior design subjects were applied. After the experiments, students were tested for academic achievement in the cognitive, affective, and psychomotor areas. As a result, the instruction program using the 3d sketch program developed in this study was found to be more effective in improving students' academic achievement than existing manual instruction program in both cognitive, affective, and psychomotor areas.

Experimental Validation of Topology Design Optimization (밀도법 기반 위상 최적설계의 실험적 검증)

  • Cha, Song-Hyun;Lee, Seung-Wook;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • From the numerical results of density-based topology design optimization, a CAD geometric model is constructed and fabricated using 3D printer to experimentally validate the optimal design. In the process of topology design optimization, we often experience checkerboard phenomenon and complicated branches, which could result in the manufacturing difficulty of the obtained optimal design. Sensitivity filtering and morphology methods are used to resolve the aforementioned issues. Identical volume fraction is used in both numerical and experimental models for precise validation. Through the experimental comparison of stiffness in various designs including the optimal design, it turns out that the optimal design has the highest stiffness and the experimental result of compliance matches very well with the numerical one.