• Title/Summary/Keyword: 4절점 요소

Search Result 153, Processing Time 0.023 seconds

The Development of Incompatible Finite Elements for Plane Stress/Strain Using Multivariable Variational formulation (다변수 변분해법에 의한 비적합 4절점 사각형 평면응력 및 평면변형률 요소의 개발)

  • 주상백;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2871-2882
    • /
    • 1994
  • Two kinds of 4-node plane stress/strain finite elements are presented in this work. They are derived from the modified Hellinger-Reissner variational principle so as to employ the internal incompatible displacement and independent stress fields, or the incompatible displacement and strain fields. The introduced incompatible functions are selected to satisfy the constant strain condition. The elements are evaluated on several problems of bending and material incompressibility with regular and distorted elements. The results show that the new elements perform excellently in the calculation of deformation and stresses.

Evaluation on Structural Performance of Two-nodal Rotary Frictional Component (2절점 회전형 마찰요소의 구조성능 평가)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.51-57
    • /
    • 2015
  • Various hybrid dampers have been developed in Korea to control the vibration due to a wind and earthquake. In order to minimize the installment space, cost and construction process, the new hybrid friction damper is developed. This hybrid damper is composed of several rotary friction components having two frictional joint. Because of these components, the building vibration due to wind and earthquake can be mitigated by hybrid friction damper. In this paper, various dependency tests were carried out to evaluate on the structural performance of two joint rotational friction component of the hybrid damper. Test results show that two joint rotational components do not depend on a displacement and a frequency of forcing but friction coefficients is reducing as a clamping force is increasing.

Minimum Weight Design of the Boom of an Ecavator (굴삭기 붐의 최적 설계)

  • 임오강;신양범;이병우
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.91-98
    • /
    • 1993
  • Minimum weight design of the boom of an excavator with stress and displacement constraints was performed. The procedure of analysis consists of the following steps. The finite element model of the boom was built up by using 227 triangular plate elements each of which has three nodes. And then the finite element program was implemented and its accuracy was verified by comparing its results with those of the commercial structural analysis package-ANSYS 4.4A. For the constraints of stresses and displacements, the design sensitivities of those were computed using direct differentiation method. To verify the reliability of them the results were compared with those of the finite difference method. The optimum design value was obtained by using PLBA(Pshenichny-Lim-Belegundu-Arora)non-linear optimization program which adopts the active set strategy. Using the above results, minimum weight design of an excavator boom showed an effect of 27% reduction in weight.

  • PDF

Generation of Subdivision Surface and First-order Shear Deformable Shell Element Based on Loop Subdivision Surface (서브디비전의 다중해상도 기능을 이용한 곡면의 모델링과 유한요소 해석)

  • 김형길;서홍석;조맹효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2004
  • In the present study, Loop scheme is applied to generate smooth surfaces. To be consistent with the limit points of target surface, the initial sampling points are properly rearranged. The pointwise errors of curvature and position in the sequence of subdivision process are evaluated in the Loop subdivision scheme. A first-order shear deformable Loop subdivision triangular element which can handle transverse shear deformation of moderately thick shell are developed. The developed element is more general than the previous one based on classical shell theory, since the new one includes the effect of transverse shear deformation and has standard six degrees of freedom per node. The quartic box spline function is used as interpolation basis function. Numerical examples for the benchmark static shell problems are analyzed to assess the performance of the developed subdivision shell element and locking trouble.

Laterally Loaded Soil-Pile Interaction Analysis in Frequency Domain (횡하중을 받는 지반-말뚝 상호작용계의 동적 주파수 응답해석)

  • 김문겸;임윤묵;김민규;조석호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used lot a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted lot soil. These two fields are coupled using FE-BE coupling technique. In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, various numerical analyses of piles considering different conditions of soil-pile interaction system are performed to examine the dynamic behavior of the system. It has been found that the developed method which satisfies the radiation conditions of multi-layered half planes can be applied to various structure systems effectively in frequency domain.

  • PDF

Precise Tidal Simulation on the Yellow Sea and Extended to North Western Pacific Sea (황해 및 북서태평양 확장해역 정밀조석모의)

  • Suh, Seung-Won;Kim, Hyeon-Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.205-214
    • /
    • 2011
  • Finite element grid refinements with different intensities having 14 K, 52 K and 211 K on the Yellow Sea (YS) have been constructed to make precise tidal simulations. In the meanwhile 57 K grid was made to the extended North Western Pacific (NWP) sea. Numerical simulation were done based on 32 parallel processors by using pADCIRC v 49.21 model. In the YS tidal simulation on YS-G52K and YS-G211K grid structure, KorBathy30s and ETOPO1 bathymetry data are used and 4 major tidal constituents are prescribed from FES2004. Computed results are in good agreement within 0.138 meter in RMS error for amplification and 14.80 degree of phase compared to observed tidal records. Similar error bounds are acquired in the extended NWP tidal simulation on NWP-G57K grid with 8 tidal constituent prescription on the open boundary.

Finite Element Modeling of Tunnels Constructed in Discontinuous Rock Mass (불연속암반내 시공되는 터널의 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Chong-Seok;Lee, Ho;Lee, Kwang-Myoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.221-234
    • /
    • 1999
  • This paper deals with the application of joint element in the finite element modeling of discontinuities encountered during rock tunneling. A nodal displacement joint element was implemented in a two dimensional finite element program GEOFE2D. The applicability of the joint element for modeling of discontinuities and the numerical stability of the implemented algorithm were examined by comparing the results of reduced small scale model tests as well as commercially available FEM program. The GEOFE2D was then used to analyze a tunnel crossed by a major discontinuity for the purpose of understanding the effect of discontinuity on the tunnel behavior. In addition, a modeling technique for the junction of discontinuity and shotcrete lining was presented. The results of analysis indicated that the stress-strain field around the tunnel is significantly altered by the presence of discontinuity, and that the stresses in the shotcrete lining considerably increase at the junction of the shotcrete lining and the discontinuity. It is therefore concluded that the major discontinuities must be carefully modeled in the finite element analysis of a tunneling problem in order to obtain more reliable results close to actual tunnel behavior.

  • PDF

Effect of the Pipe Joint on Structural Performance of a Single-span Greenhouse: A Full-scale Experimental and Numerical Study (파이프 이음부가 단동온실 구조성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Shin, Hyun Ho;Ryu, Hee Ryong;Yu, In Ho;Cho, Myeong Whan;Seo, Tae Cheol;Kim, Seung Yu;Choi, Man Kwon
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • This study was conducted in 8.2m wide single-span greenhouse to investigate the effect of presence or absence of rafter steel pipe joint and foundation conditions on greenhouse structural performance. Structural performance was evaluated by static loading test using the structural performance evaluation system for single-span greenhouse. The measured displacement was compared with the predicted result by numerical analysis. The displacement of each measurement location showed a significant difference regardless of the conditions of the foundation and presence or absence of rafter steel pipe joint. Compared to the hinge conditions, the difference in structural performance of the greenhouse in the fixed conditions was seen to be relatively large. The difference in structural performance according to presence or absence of rafter steel pipe joints, the lateral stiffness of the joint was 8.1% greater.

Finite Element Simulation of Fracture Toughness Test (파괴인성시험의 유한요소 시뮬레이션)

  • Chu, Seok Jae;Liu, Conghao
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.491-496
    • /
    • 2013
  • Finite element simulations of tensile tests were performed to determine the equivalent stress - equivalent plastic strain curves, critical equivalent stresses, and critical equivalent plastic strains. Then, the curves were used as inputs to finite element simulations of fracture toughness tests to determine the plane strain fracture toughness. The critical COD was taken as the COD when the equivalent plastic strain at the crack tip reached a critical value, and it was used as a crack growth criterion. The relationship between the critical COD and the critical equivalent plastic strain or the reduction of area was found. The relationship between the plane strain fracture toughness and the product of the critical equivalent stress and the critical equivalent plastic strain was also found.

Nonlinear Dynamic Analysis of Reinforced Concrete Shells Using Layered Elements with Drilling DOF (회전자유도를 갖는 층상화 요소를 이용한 철근콘크리트 쉘구조의 비선형 동적해석)

  • 김태훈;이상국;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.21-27
    • /
    • 2001
  • In this paper, a nonlinear finite element procedure is presented for the dynamic analysis of reinforced concrete shells. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. A 4-node flat shell element will drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the nonlinear dynamic analysis of reinforced concrete shells is verified by comparison with reliable analytical results.

  • PDF