• Title/Summary/Keyword: 3d simulation

Search Result 5,265, Processing Time 0.025 seconds

Numerical Simulation of Tribological Phenomena Using Stochastic Models

  • Shimizu, T.;Uchidate, M;Iwabuchi, A.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.235-236
    • /
    • 2002
  • Tribological phenomena such as wear or transfer are influenced by various factors and have complicated behavior. Therefore, it is difficult to predict the behavior of the gribological phenomena because of their complexity. But, those tribological phenomena can be considered simply as to transfer micro material particles from the sliding interface. Then, we proposed the numerical simulation method for tribological phenomena such as wear of transfer using stochastic process models. This numerical simulation shows the change of the 3-D surface topography. In this numerical simulation, initial 3-D surface toughness data are generated by the method of non-causal 2-D AR (autoregressive) model. Processes of wear and transfer for some generated initial 3-D surface data are simulated. Simulation results show successfully the change of the 3-D surface topography.

  • PDF

Cloth Simulation System for 3D Fashion shopping mall based on Web (웹 기반 3D 패션몰을 위한 의복 시뮬레이션 시스템)

  • Kim, Ju-Ri;Joung, Suck-Tae;Jung, Sung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.877-886
    • /
    • 2009
  • In this paper, we propose a new method for the design and implementation of Cloth Simulation System for 3D fashion shopping mall based on Web. Web 3D shopping mall is implemented by using a Web3D authoring tool, ISB, which provides easy mouse operation. 3D human models and cloth item model are designed by low polygon modeling method of 3D MAX. The designed 3D human models and cloth item model are exported to XML file. Finally, 3D human models and cloth item model are displayed and animated on the Web by using ActiveX control based on DirectX. We also implemented textile palette and mapped it to clothes model by using alpha blending during simulation.

Virtual Reality and 3D Printing for Craniopagus Surgery

  • Kim, Gayoung;Shim, Eungjune;Mohammed, Hussein;Kim, Youngjun;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • Purpose Surgery for separating craniopagus twins involves many critical issues owing to complex anatomical features. We demonstrate a 3D printed model and virtual reality (VR) technologies that could provide valuable benefits for surgical planning and simulation, which would improve the visualization and perception during craniopagus surgery. Material & Methods We printed a 3D model extracted from CT images of craniopagus patients using segmentation software developed in-house. Then, we imported the 3D model to create the VR environment using 3D simulation software (Unity, Unity Technologies, CA). We utilized the HTC Vive (HTC & Valve Corp) head-mount-display for the VR simulation. Results We obtained the 3D printed model of craniopagus patients and imported the model to a VR environment. Manipulating the model in VR was possible, and the 3D model in the VR environment enhanced the application of user-friendly 3D modeling in surgery for craniopagus twins. Conclusion The use of the 3D printed model and VR has helped understand complicated anatomical structures of craniopagus patients and has made communicating with other medical surgeons in the field much easier. Further, interacting with the 3D model is possible in VR, which enhances the understanding of the craniopagus surgery as well as the success rate of separation surgery while providing useful information on diagnosing and surgery planning.

Application of 3D Simulation Surgery to Orthognathic Surgery of Hemimandibular Hypoplasia

  • Park, Jin Hoo;Jung, Young-Soo;Kwon, Sun-Mo;Lim, Jae-Seok;Jung, Hwi-Dong
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.69-73
    • /
    • 2016
  • Traditionally 2D cephalometric analysis has been used for diagnosis and treatment of maxillofacial deformities. However, 2D has some limitations in diagnosis and treatment planning especially facial asymmetry cases. The most weakness of 2D is overlapping and unpredictability. Today 3D treatment tools are used by many maxillofacial surgeons. 3D treatment tools can show ungarbled facial anatomy and do virtual surgery. The aim of this report is to present usefulness of using 3D analysis and virtual orthognathic surgery for severe facial asymmetry patients.

Verification of Manufacturing Process of PSC Box Girder Bridge Segment by 3D Simulation (3차원 시뮬레이션을 활용한 PSC 박스거더교 세그먼트 제작 공정의 검증)

  • Kim, Min-Seok;Son, Heung-Rak;Lee, Kwang-Myong;Park, Young-Ha;Park, Min-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.235-240
    • /
    • 2008
  • PSC box girder bridges are built through the repetitive manufacturing process of concrete segment. However, during the initial segment manufacturing stage, design change may occur frequently due to design errors and interferences between components, resulting in the extension of segment manufacturing period. This paper aims to verify the manufacturing process of PSC box girder segment by 3D simulation technique. All the components of a segment were modelled and assembled by simulation technique and then, some design errors were found and revised appropriately to optimize the manufacturing process of segment. Consequently, 3D simulation technique would be promising to improve the quality of the segment and to reduce its manufacturing time and cost.

  • PDF

Design of Driver License Simulation Model Using 3D Graphics (3D 그래픽을 적용한 운전면허 시뮬레이터 설계)

  • Won, Ji-Woon;Hong, Jinpyo
    • Journal of Practical Engineering Education
    • /
    • v.5 no.2
    • /
    • pp.169-176
    • /
    • 2013
  • Recently the construction of simulation environment is an important issue in all fields. In case of the training for operating machines such as airplanes or spaceships which cause a huge cost, simulators could be helpful to reduce the costs and training efforts by simulating real situations. When people get a driver's license, too many trainees have to wait for their turns because of the limited number of cars and the small space of training sites. To solve this problem, we have designed and developed the basic design for the simulators. We suggest the Computer 3D Simulation Model for a driver's practice. The concept of this simulator is from a 3D Racing-game which suits for a driving exercise. We provide users with handle-controlled simulation settings to let users feel reality as if they drive in real through this simulator. We also use a 'force-feedback' system which gives handle vibration when users collide against obstacles or exceed lanes. Users can be absorbed in the simulation program and feel the sense of the real. This paper is the study about modeling the driving exercise model of 'computer 3D simulation', and producing and utilizing the simulator through this modeling.

3-Dimensional Simulation Model for Automated Container Terminals (자동화 컨테이너터미널을 위한 3차원 시뮬레이션 모델)

  • Choi, Yong-Seok;Ha, Tae-Young
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.74-81
    • /
    • 2005
  • In this study, we introduce a 3D simulation model to support the design on ACT(Automated Container Terminal) using 3D animation. The developed simulation model simulate virtual operations of ACT and animate the simulated results with real time. We provide several validation points for the design of ACT. And the developed system applied an object-oriented design and C++ programming to increase the reusability and extensibility. We can perform the various simulation experiment and analyze performances to estimate the required number of equipment using developed simulation model.

  • PDF

A Case Study of the Design of Robot Welding Station in an Excavator Factory Using 3D Simulation (굴삭기공장에서 로봇을 이용한 용접공정의 3D 시뮬레이션 사례 연구)

  • Moon, Dug-Hee;Cho, Hyun-Il;Baek, Seung-Geun
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.113-121
    • /
    • 2005
  • Virtual Manufacturing is a powerful methodology for developing a new product, new equipment and new production system. It enables us to check the errors in design before production. This paper deals with a case study of virtual manufacturing in an excavator factory. Boom and rotating table of upper body are selected for application. 3D models of parts and fixtures are developed with CATIA and 3D simulation models are developed with IGRIP. These models are used for the design of fixture to verify the motion of the equipment. As a result, the manual welding systems are replaced by automatic systems and many design errors are corrected in the design phase, which enables us to reduce the developing cost and time.

  • PDF

VRML as a Modeling Language for 3D Visual Interactive Simulation (3차원 대화형 시뮬레이션 모델기술언어로서의 VRML)

  • 김형도
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.1
    • /
    • pp.15-24
    • /
    • 1997
  • VRML (Virtual Reality Modeling Language) is an Web-based standard for modeling 3D spaces and provides applications with 3D interactive interfaces. With its recent upgrade, it supports events, routes, scripts, and other behavior modeling constructs. This paper approaches VRML as a simulation modeling language. This approach promotes the sharing and distribution of simulation results and demonstration among distributed users as well as efficient modeling of systems through the direct mapping of 3D objects and behaviors. This paper analyzes the behavior modeling constructs of VRML, presents effective modeling alternatives through the modeling of a simple material processing system, and discusses the upgrade direction of VRML as a foundation for distributed interactive simulation system.

  • PDF

Simulation Based Production Using 3-D CAD in Shipbuilding

  • Okumoto, Yasuhisa;Hiyoku, Kentaro;Uesugi, Noritaka
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • The application of three-dimensional (3-D) CAD has been popularized for design and production and digital manufacturing has been spreading in many industrial fields. By simulation of the production process using 3-D digital models, which are the core of CIM (Computer Integrated Manufacturing) system, the efficiency and safety of production are improved at each stage of work, and optimization of manufacturing can be achieved. This paper firstly describes the concept of "simulation based production" in shipbuilding and also digital manufacturing; the 3-D CAD system is indispensable for effective simulation because ship structure is three dimensionally complex. By simulation, "computer optimized manufacturing" can be possible. The most effective fields of simulation in shipbuilding are in jobs where many parties have to cooperate, while existing two-dimensional drawings are hardly observed the whole structures due to interference between structures or equipment of complex shape. In this paper some examples of the successful application in IHIMU (IHI Marine United Inc.) are shown: assembly of a pipe unit, erection of a complex hull block, carriage of equipment, installation of a propeller, and access in an engine room.