• 제목/요약/키워드: 3Y-TZP Zirconia

검색결과 111건 처리시간 0.023초

Monolithic zirconia crowns: effect of thickness reduction on fatigue behavior and failure load

  • Prott, Lea Sophia;Spitznagel, Frank Akito;Bonfante, Estevam Augusto;Malassa, Meike Anne;Gierthmuehlen, Petra Christine
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권5호
    • /
    • pp.269-280
    • /
    • 2021
  • PURPOSE. The objective of this study was to evaluate the effect of thickness reduction and fatigue on the failure load of monolithic zirconia crowns. MATERIALS AND METHODS. 140 CAD-CAM fabricated crowns (3Y-TZP, inCorisTZI, Dentsply-Sirona) with different ceramic thicknesses (2.0, 1.5, 1.0, 0.8, 0.5 mm, respectively, named G2, G1.5, G1, G0.8, and G0.5) were investigated. Dies of a mandibular first molar were made of composite resin. The zirconia crowns were luted with a resin composite cement (RelyX Unicem 2 Automix, 3M ESPE). Half of the specimens (n = 14 per group) were mouth-motion-fatigued (1.2 million cycles, 1.6 Hz, 200 N/ 5 - 55℃, groups named G2-F, G1.5-F, G1-F, G0.8-F, and G0.5-F). Single-load to failure was performed using a universal testing-machine. Fracture modes were analyzed. Data were statistically analyzed using a Weibull 2-parameter distribution (90% CI) to determine the characteristic strength and Weibull modulus differences among the groups. RESULTS. Three crowns (21%) of G0.8 and five crowns (36%) of G0.5 showed cracks after fatigue. Characteristic strength was the highest for G2, followed by G1.5. Intermediate values were observed for G1 and G1-F, followed by significantly lower values for G0.8, G0.8-F, and G0.5, and the lowest for G0.5-F. Weibull modulus was the lowest for G0.8, intermediate for G0.8-F and G0.5, and significantly higher for the remaining groups. Fatigue only affected G0.5-F. CONCLUSION. Reduced crown thickness lead to reduced characteristic strength, even under failure loads that exceed physiological chewing forces. Fatigue significantly reduced the failure load of 0.5 mm monolithic 3Y-TZP crowns.

Biotribological Properties of TZP/Al2O3 Ceramics for Biomechanical Applications

  • Lee, Deuk-Yong;Lee, Se-Jong;Jang, Ju-Woong;Kim, Hak-Kwan;Kim, Dae-Joon
    • 한국세라믹학회지
    • /
    • 제40권6호
    • /
    • pp.525-529
    • /
    • 2003
  • Biotribological properties, such as wear rate and friction coefficient, of 3Y-TZP and Low Temperature Degradation (LTD) free materials were investigated via a ball(SiC)-on-plate sliding wear test to evaluate the relationship between wear mechanism and phase transformation. Wear test was conducted with a sliding speed of 0.035 m/s at room temperature and at 25$0^{\circ}C$ in air under a normal load of 49 N, respectively. Although friction coefficient of 3Y-TZP was the lowest due to the fine grain size, the highest wear loss and rate were observed due to the debris of monoclinic grains introduced during sliding and their values increased drastically with raising temperature. However, the biotribological properties of LTD-free materials were insensitive to temperature due to the inertness of the phase transformation, suggesting that they may be applicable to the biomechanical parts.

치과용 생체보철물 제작을 위한 TZP 단일구조 전부도재관 블럭의 물성과 저온열화 후 굴곡강도에 관한 연구 (The research about the physical properties and flexural strength changed by Low Temperature Degradation of TZP monolithic all-ceramic crown block to make bio-prosthetic dentistry)

  • 이종화;박천만;송재상;임시덕;김재도;김병식;황인환;이성국
    • 대한치과기공학회지
    • /
    • 제34권2호
    • /
    • pp.83-93
    • /
    • 2012
  • Purpose: The objective of this study is to find out physical properties and the flexural strength changed by the low temperature degradation of the block which is needed to make bio-prosthetic dentistry which is better than feldspar affiliated ceramic made by building up ceramic powder and also to apply this to the clinical use of zirconia monolithic all-ceramic crown. Methods: Flexural strength of each sample was evaluated before and after the Low Temperature Degradation, and physical properties of the Tetra Zirconia Block containing 3mol % was evaluated as well. The average and standard deviation of each experimental group were came out of the evaluation. Statistical package for social science 18.0 was used for statistics. Results: The average density of the monolithic all-ceramic crown was $6.0280{\pm}0.0147g/cm$, the relative density was 99.01 %. When the sample was sintered at $1480^{\circ}C$ the diameter of average particle was $396.62{\pm}33.71nm$. All the samples had no monolithic peak after XRD evaluation but only had tetragonal peak. There were statistically significant differences in the result of flexural strength of the samples evaluated after and before the low temperature degradation, the flexural strength before the low temperature degradation was $1747.40{\ss}{\acute{A}}$, at the temperature of $130^{\circ}C$ the flexural strength after the low temperature degradation was 1063.99MPa (p<0.001). There was statistically significant difference in the result of strength of 1020.07MPa after the low temperature degradation at the temperature of $200^{\circ}C$ (p<0.001). Conclusion: The block which was made for this evaluation possesses such an excellent strength among dental restorative materials that it is thought to have no problems to use for tetragonal zirconia polycrystal.

Effect of abutment types and resin cements on the esthetics of implant-supported restorations

  • Asena Ceken;Hamiyet Kilinc;Sedanur Turgut
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권3호
    • /
    • pp.114-125
    • /
    • 2023
  • PURPOSE. The aim of the study was to evaluate the optical properties of new generation (3Y-TZP) monolithic zirconia (MZ) with different abutment types and resin cement shades. MATERIALS AND METHODS. A1/LT MZ specimens were prepared (10 × 12 × 1 mm, N = 30) and divided into 3 groups according to cement shades as transparent (Tr), yellow (Y) and opaque (O). Abutment specimens were obtained from 4 different materials including zirconia (Group Z), hybrid (Group H), titanium (Group T) and anodized yellow titanium (Group AT). MZ and abutment specimens were then cemented. L*, a*, and b* parameters were obtained from MZ, MZ + abutment, and MZ + abutment + cement. ∆E001* (between MZ and MZ + abutment), ∆E002* (between MZ and MZ + abutment + cement) and ∆E003* (between MZ + abutment and MZ + abutment + cement) values were calculated. Statistical analyses included 2-way ANOVA, Bonferroni, and Paired Sample t-Tests (P < .05). RESULTS. Abutment types and resin cements had significant effect on L*, a*, b*, ∆E001*, ∆E002*, and ∆E003* values (P < .001). Without cementation, whereas zirconia abutment resulted in the least discoloration (∆E001* = 0.68), titanium abutment caused the most discoloration (∆E001* = 4.99). The least ∆E002* = 0.68 value was seen using zirconia abutment after cementation with yellow shaded cement. Opaque shaded cement caused the most color change (∆E003* = 5.24). Cement application increased the L* values in all groups. CONCLUSION. The least color change with/without cement was observed in crown configurations created with zirconia abutments. Zirconia and hybrid abutments produced significantly lower ∆E002* and ∆E003* values in combination with yellow shaded cement. The usage of opaque shaded cement in titanium/anodized titanium groups may enable the clinically unacceptable ∆E00* value to reach the acceptable level.

Y-TZP zirconia의 기계적 표면처리가 파절저항과 접착계면 실패에 미치는 영향 (Effect of mechanical surface treatment on the fracture resistance and interfacial bonding failure of Y-TZP zirconia)

  • 이양진
    • 구강회복응용과학지
    • /
    • 제30권2호
    • /
    • pp.102-111
    • /
    • 2014
  • 목적: 본 연구의 목적은 air-blasting particle size를 달리하고 분사 압력과 시간을 통상보다 크게 증가시켜 표면에 큰 손상을 유발한 군을 상대적으로 작은 손상을 유발한 군과 비교하여 파절 저항과 접착 강도 차이를 보이는지 평가하는 데 있다. 연구 재료 및 방법: 지르코니아($LAVA^{TM}$) 디스크 표면에 각각 $30{\mu}m$- particle size (Cojet) 2.8 bar 15초, $110{\mu}m$- (Rocatec) 2.8 bar 15초, $110{\mu}m$- (Rocatec) 3.8 bar 30초로 조건을 달리하여 표면처리 후 각각 이축 굽힘하중 강도 실험과 접착 파절 하중 실험을 실행하였다. 접착은 상아질 유사 베이스에 $200{\mu}m$ 두께의 레진시멘트로 시행하여 인장력을 극대화하였으며 음향방출(AE) 센서로 실패하중을 검출하였다. 결과: 이축 굽힘하중 강도, 접착 파절하중은 세 군간 서로 유의성 있는 차이를 보이지 않았다(P > 0.05). 접착 시편의 균열은 대부분 radial crack이었다. 결론: 정하중 평가의 한계 내에서, air-blasting particle size와 압력에 의한 표면 손상은 크지 않았으며, 접착 파절하중 평가는 표면 손상과 접착 강도를 동시에 평가할 수 있는 방법이라 여겨진다.

지르코니아 세라믹의 열수 상 안정성 (Hydrothermal Stability of Zirconia Ceramics)

  • 이득용;;김대준;박노진
    • 한국세라믹학회지
    • /
    • 제39권2호
    • /
    • pp.190-193
    • /
    • 2002
  • 3Y-TZP에 희토류 산화물($CeO_2,\;Tb_2O_3$)을 0.5% 이하로 첨가시킨 지르코니아 단결정을 skull melting법으로 제조하여 오토클레이브 하에서 열수 상 안정성을 조사하였다. 극점도 측정결과, skull melting 법으로 제조한 $CeO_2$$Tb_2O_3$가 첨가된 시편들은 단결정이었으며 150∼250$^{\circ}C$에서 5시간 수증기 분위기 하에서 열처리한 후에도 정방정 상이 유지되는 우수한 열수 상 안정성이 관찰되었다.

3D quantitative analysis and SEM qualitative analysis of natural antagonist enamel opposing CAD-CAM monolithic zirconia or lithium disilicate tooth-supported crowns versus enamel opposing natural enamel

  • Piyarat Woraganjanaboon;Chuchai Anunmana
    • The Journal of Advanced Prosthodontics
    • /
    • 제16권1호
    • /
    • pp.12-24
    • /
    • 2024
  • PURPOSE. This study aimed to evaluate the maximum vertical wear, volume wear, and surface characteristic of antagonist enamel, opposing monolithic zirconia or lithium disilicate crowns. MATERIALS AND METHODS. The study comprised 24 participants (n = 12), who were randomly allocated to receive either a 5 mol% Y-TZP or a lithium disilicate crown in positions which would oppose the natural first molar tooth. The contralateral first molar along with its antagonist was considered as the enamel opposing natural enamel control. Data collection was performed using an intraoral scanner and polyvinylsiloxane impression. The means of the maximum vertical loss and the volume loss at the occlusal contact areas of the crowns and the various natural antagonists were measured by 3D comparison software. A scanning electron microscope was subsequently used to assess the wear characteristics. RESULTS. The one-year results from 22 participants (n = 11) indicated no significant differences when comparing the zirconia crown's antagonist enamel (40.28 ± 9.11 ㎛, 0.04 ± 0.02 mm3) and the natural enamel wear (38.91 ± 7.09 ㎛, 0.04 ± 0.02 mm3) (P > .05). Also, there is no significant differences between lithium disilicate crown's antagonist enamel (47.81 ± 9.41 ㎛, 0.04 ± 0.02 mm3) and the natural enamel wear (39.11 ± 7.90 ㎛, 0.04 ± 0.02 mm3) (P > .05). CONCLUSION. While some studies suggested that monolithic zirconia caused less wear on opposing enamel than lithium disilicate, this study found similar wear levels to enamel for both materials compared to natural teeth.

인공 고관절 골두용 세라믹 복합재료에 대한 세라믹-세라믹 접촉 마멸 특성 분석 (Ceramic-Ceramic Wear of Zirconia/Alumina Composites for the Application of Total Hip Replacement)

  • 이권용;김환;김대준;이명현;서원선
    • Tribology and Lubricants
    • /
    • 제21권5호
    • /
    • pp.216-220
    • /
    • 2005
  • The sliding wear behaviors of three different compositions of novel low temperature degradation-free zirconia/alumina (LTD-free Z/A) composites were examined in a ceramic-ceramic contact pair. The wear tests were performed by using a pin-on-disk type wear tester in a linear reciprocal sliding motion with a line contact in both dry and bovine serum lubricated conditions at room temperature. From the results of dry sliding wear tests, Z/A#1((5.3Y, 4.6Nb)-TZP/80 $vol\%Al_2O_3$) showed the best wear resistance among three kinds of LTD-free Z/A composites. For the bovine serum lubricated sliding wear tests, wear was too little to be measured for all kinds of Z/A composites. These novel LTD-free Z/A composites having excellent wear resistance demonstrated a potential as the alternative materials for the ceramic-ceramic contact pairs of femoral head and acetabular liner in total hip replacement.

Y2O3안정화제 첨가량에 따라 수열합성법으로 제조된 ZrO2-Xmol% Y2O3분말의 합성 및 기계적 특성 (Hydrothermal Synthesis and Mechanical Characterization of ZrO2 by Y2O3 Stabilizer Contents)

  • 이학주;김택남;배성철;고명원;류재경
    • 한국재료학회지
    • /
    • 제20권10호
    • /
    • pp.518-523
    • /
    • 2010
  • In this study, partially stabilized zirconia was synthesized using a chemical $Y_2O_3$ stabilizer and hydrothermal method. First, $YCl_3-6H_2O$ and $ZrCl_2O-8H_2O$ was dissolved in distilled water. Y-TZP (a $Y_2O_3$-doped toughened zirconia polycrystalline precursor) was also prepared by conventional co-precipitates in the presence of an excess amount of $NH_4OH$ solution under a fixed pH of 12. The Y-TZP precursors were filtered and repeatedly washed with distilled water to remove $Cl^-$ ions. $ZrO_2$-Xmol%$Y_2O_3$ powder was synthesized by a hydrothermal method using Teflon Vessels at $180^{\circ}C$ for 6 h of optimized condition. The powder added with the Xmol%- $Y_2O_3$ (X = 0,1,3,5 mol%) stabilizer of the $ZrO_2$ was synthesized. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens of $33mm{\times}8mm{\times}3$ mm for three-point bend tests were used in the mechanical properties evaluation. A teragonal phase was observed in the samples, which contains more than 3 mol% $Y_2O_3$. The $3Y-ZrO_2$ agglomerated particle size was measured at $7.01{\mu}m$. The agglomerated particle was clearly observed in the sample of 5 mol % $Y_2O_3-ZrO_2$, and and the agglomerated particle size was measured at 16.4 um. However, a 20 nm particle was specifically observed by FE-SEM in the sample of 3 mol% $Y_2O_3-ZrO_2$. The highest bending fracture strength was measured as 321.3 MPa in sample of 3 mol% $Y_2O_3-ZrO_2$.

Y$_2$O$_3$ 를 첨가한 정방정 지르코니아에서의 접촉손상 및 강도저하 (Contact Damage and Strength Degradation of Yttria doped Tetragonal Zirconia Polycrystal)

  • 정연길;최성철
    • 한국세라믹학회지
    • /
    • 제35권5호
    • /
    • pp.429-436
    • /
    • 1998
  • The mechanical properties and damage mode of {{{{ {Y}_{2 } {O}_{3} }}-doped tetragonal (Y-TZP) can-didated as biomaterials were performed under indentation stress-strain curve critical load for yield and cracking strength degradation and fatigue behavior with Hertzian indentation tests. This material shows the brittle behavior which is confirmed by indentation stress-strain response. The critical load for cracking(Pc) is much higher than that for yields (Py) indicating crack resistance Strength were strongly dependant on contact area and there were no degradation when the indenter size was ${\gamma}$=3.18 mm suggesting that Y-TZP should be highly damage tolerant to the blunt contacts. Multi-cycle contact were found to be innocuous up to {{{{ {10 }^{6 } }} cycles at 500N and {{{{ {10 }^{5 } }} cycles at 1000N in water. On the other hand contacts at {{{{ {10 }^{6 } }} cycles at 1000 N in water did show some signs of incipient degradation. By contrast contacts with Vickers indenter pro-duced substantial strength losses at much lower loads suggesting that the mechanical integrity of this ma-terial would be compromised by inadvertent sharp contacts.

  • PDF