• Title/Summary/Keyword: 3Y-$ZrO_2$

Search Result 1,705, Processing Time 0.029 seconds

Fabrication and dielectric properties of $LaAlO_3-BaZrO_3$ perovskites ($LaAlO_3-BaZrO_3$계 perovskites의 제조 및 유전특성)

  • Lee, So-Hee;Kim, Shin;Shin, Hyun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.325-325
    • /
    • 2007
  • The perovskites in the $LaAlO_3-BaZrO_3$ system (i.e., $(1-x)LaAlO_3-xBaZrO_3$ were fabricated by a solid state reaction and their dielectric properties were investigated. For the compositions of x=0.1~0.9, the mixture of $LaAlO_3$ with a rhombohedral structure and $BaZrO_3$ with a cubic was observed when the sintering was conducted at $1500^{\circ}C$, indicating that the solubility of constituent elements was very low and a narrow solid solution region might exist. The large difference of ionic radii between $La^{3+}$ ion (0.136nm, C.N.=12) and $Ba^{2+}$ ion (0.161nm) or $Al^{3+}$ ion (0.0535nm, C.N.=6) and $Zr^{4+}$ ion (0.072nm) might hinder the mutual substitution. Within the compositions of x=0~0.7, the dielectric constant of the mixture increased with the amount of $BaZrO_3$, i.e., x value, which was in good agreement with the logarithmic mixing rule (In $_{r,i}={\Sigma}v_iln\;_{r,i}$). The increase in $BaZrO_3$ doping decreased $Q{\times}f$ value significantly due to the low $Q{\times}f$ value of $BaZrO_3$ itself, a poor microstructure of the mixture with an increased grain boundary area per volume, and defects in the cation and oxygen sub-lattices which were respectively caused by the evaporation of barium during the sintering process and the substitution of Ba on La-site or Al on Zr-site.

  • PDF

Dielectric and Piezoelectric Properties of $Pb(Ni_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ Ceramics for Actuator Applications (대변위용 액츄에이터 응용을 위한 $Pb(Ni_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ 세라믹스에서의 유전 및 압전 특성)

  • Kim, Chang-Il;Lim, Eun-Kyeong;Paik, Jong-Hoo;Lim, Jong-In;Lee, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.228-229
    • /
    • 2006
  • 본 연구에서는 초음파 모터 등의 고출력 액츄에이터에 응용 가능한 $04Pb(Ni_{1/3}Nb_{2/3})O_3-6Pb(Zr_xTi_{1-x})O_3$ 조성시스템에 소결온도를 달리하여 압전, 유전특성 및 미세구조에 관해 고찰하였다. 본 조성을 $1200^{\circ}C$ 온도에서 2, 4, 6, 8시간 소결하여 시편을 제조하였으며 이의 결정구조 및 미세조직을 분석하였다. 소결시간 증가에 따라 전기기계결합계수와 기계적품질계수는 증가하였으며, 압전상수는 Zr(Zr+Ti)비 0.390까지 증가하였으나 그 이상 증가함에 따라 감소하였다. 압전특성은 $1200^{\circ}C$에서 4시간 소결한 Zr=0.390인 조성에서 ${\varepsilon}_r$ = 4487, $k_p$ = 0.72. $d_{33}$ = 710, $Q_m$ =109의 우수한 특성을 나타내었다.

  • PDF

Platinum Nano-Dispersion via In Situ Processing - Preparation and catalytic Property of Porous $CaZrO_3/MgO/Pt$ Nanocomposite

  • Yoshikazu;Hwang, Hae-Jin;Naoki Kondo;Tatsuki Ohji
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.163-167
    • /
    • 2001
  • A bulk porous $CaZrO_3/MgO$ composite with plantinum nano-dispersion was synthesized in air atmosphere through the combination of several in situ reactions, including the pyrolysis of $PtO_2$. A mixture of $CaMg(CO_3)_2$(dolomite), $ZrO_2$, $PtO_2$ and LiF (0.5 wt%, as an additive) was cold isostatically pressed at 200 MPa and sintered at $1100^{\circ}C$ for 2 h. The porous $CaZrO_3/MgO/Pt$ composite ($CaZrO_3/MgO$ : Pt=99 : 1 in volume) had a uniformly open-porous structure (porosity: 56%) with three-dimensional (3-D) network and a narrow pore-size distribution, similarly to the porous $CaZrO_3/MgO$ composites reported before. Catalytic Properties (viz., NO direct decomposition and NO reduction by $C_2H_4$) of the $CaZrO_3/MgO/Pt$ composite were investigated up to $900^{\circ}C$. In the absence of oxygen, the NO conversion rate reached ~52% for the direct decomposition and ~100% for the reduction by $C_2H_4$, respectively. The results suggest the possibility of the porous composite as a multifunctional filter, i.e., simultaneous hot gas-filtering and $de-NO_x$ in one component.

  • PDF

Stacked High Voltage Al Electrolytic Capacitors Using Zr-Al-O Composite Oxide

  • Zhang, Kaiqiang;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.757-763
    • /
    • 2019
  • A stacked high-voltage (900 V) Al electrolytic capacitor made with ZrO2 coated anode foils, which has not been studied so far, is realized and the effects of Zr-Al-O composite layer on the electric properties are discussed. Etched Al foils coated with ZrO2 sol are anodized in 2-methyl-1,3-propanediol (MPD)-boric acid electrolyte. The anodized Al foils are assembled with stacked structure to prepare the capacitor. The capacitance and dissipation factor of the capacitor with ZrO2 coated anode foils increase by 41 % and decrease by 50 %, respectively, in comparison with those of Al anode foils. Zr-Al-O composite dielectric layer is formed between separate crystalline ZrO2 with high dielectric constant and amorphous Al2O3 with high ionic resistivity. This work suggests that the formation of a composite layer by coating valve metal oxide on etched Al foil surface and anodizing it in MPD-boric acid electrolyte is a promising approach for high voltage and volume efficiency of capacitors.

Microstructure Refinement and Strengthening Mechanisms of a 9Cr Oxide Dispersion Strengthened Steel by Zirconium Addition

  • Xu, Haijian;Lu, Zheng;Wang, Dongmei;Liu, Chunming
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.178-188
    • /
    • 2017
  • To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of $Fe-9Cr-2W-0.3Y_2O_3$ and $Fe-9Cr-2W-0.3Zr-0.3Y_2O_3$ were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal ${\delta}$-phase $Y_4Zr_3O_{12}$ oxides and body-centered cubic $Y_2O_3$ oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of $Y_4Zr_3O_{12}$ particles is much smaller than that of $Y_2O_3$. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is $1.1{\times}10^{23}/m^3$ with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time.

Preparation of Spherical Monodispersed Y-doped ZrO2 Powders from Metal Alkoxide (금속 알콕사이드로부터 구형의 단분산 Y-doped $ZrO_2$ 미립자 제조)

  • 김병익;이중윤;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.119-126
    • /
    • 1992
  • 3 mol% Y2O3-doped ZrO2 powders were prepared by hydrolysis with 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 mol/ιH2O/ethanol into 0.1 mol/ι zirconium and yttrium alkoside/ethanol. Spherical monodispersed yttria-partially stabilized zirconia particles with an average diameter of about 0.5 ${\mu}{\textrm}{m}$ were prepared by hydrolysis with 0.2 mol/ιH2O/ethanol. The as-prepared powder was amorphous and with heating it transformed into cubic up to 80$0^{\circ}C$ and into tetragonal over 100$0^{\circ}C$. 3 mol% Y2O3-doped ZrO2 powders calcined over and up to 80$0^{\circ}C$ were a mixture of tetragonal and monoclinic and only tetragonal as determined by X-ray diffraction, respectively.

  • PDF

Electrical Characteristics of Charge Trap Flash Memory with a Composition Modulated (ZrO2)x(Al2O3)1-x Film

  • Tang, Zhenjie;Zhang, Jing;Jiang, Yunhong;Wang, Guixia;Li, Rong;Zhu, Xinhua
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.130-134
    • /
    • 2015
  • This research proposes the use of a composition modulated (ZrO2)x(Al2O3)1-x film as a charge trapping layer for charge trap flash memory; this is possible when the Zr (Al) atomic percent is controlled to form a variable bandgap as identified by the valence band offsets and electron energy loss spectrum measurements. Compared to memory devices with uniform compositional (ZrO2)0.1(Al2O3)0.9 or a (ZrO2)0.92(Al2O3)0.08 trapping layer, the memory device using the composition modulated (ZrO2)x(Al2O3)1-x as the charge trapping layer exhibits a larger memory window (6.0 V) at the gate sweeping voltage of ±8 V, improved data retention, and significantly faster program/erase speed. Improvements of the memory characteristics are attributed to the special energy band alignments resulting from non-uniform distribution of elemental composition. These results indicate that the composition modulated (ZrO2)x(Al2O3)1-x film is a promising candidate for future nonvolatile memory device applications.

Synthesis of Zirconium Oxide Nanoballs Using Colloid-Imprinted Carbon and Their Electrical Properties

  • Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.86-89
    • /
    • 2015
  • Uniform ZrO2 nanoballs were synthesized at 700℃ using the inverse replication method through a colloid-imprinted carbon (CIC) template. The structural, dielectric, and conducting properties of the ZrO2 nanoballs were investigated and compared with those of ZrO2 film prepared by sol-gel method and powdered ZrO2 chemical. Both the monoclinic and cubic phases were found in the ZrO2 balls and film but the ZrO2 chemical showed a monoclinic phase, where the cubic structure is known to be formed at above 2,300℃. ZrO2 nanoballs showed the lower dielectric property of k = 21.2 at 1 MHz because the 8-coordinated cubic phase in the ZrO2 nanoball produced lower polarization than the polarization of the 7-coordinated monoclinic ZrO2 chemical (k = 23.6). The dielectric stability was maintained in each ZrO2 ball, film, and chemical under the applied forward and reverse voltage range (−5 to +5 V) at 1 MHz. The ionic conductivities were 7.86 × 10−8/Ω·cm for ZrO2 nanoballs, 3.29 × 10−8/Ω·cm for ZrO2 chemical, and 6.70 × 10−5/Ω·cm for the thickness of 1,053 nm ZrO2 film at room temperature with the electronic contribution being less than 0.006%.

Evaluation for Grinding Performance of Ceramics (세라믹 재료의 연삭성능 평가)

  • 정을섭;김성청;김태봉;소의열;이근상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance of $AI_2O_3$ was less then that of $Si_3N_4$ and $ZrO_2$. It is because the resistance for grain shedding is less then that for layer formation. For the case of $Si_3N_4$ and $ZrO_2$, as the grain mesh number of wheel increases, the surface roughness decreases. For the case of $AI_2O_3$, the surface roughness does not decreases. For the case of $Si_3N_4$ and $ZrO_2$, grinding is carried out by abrasive wear processes. For the case of $AI_2O_3$, grinding is carried out by grain shedding process.

  • PDF

Electrical Properties of $Pb(Y_{1/2}Ta_{1/2})O_3-PbZrO_3-PbTiO_3$ Ceramic s as a function of $Fe_2O_3$content ($Fe_2O_3$ 첨가에 따른 $Pb(Y_{1/2}Ta_{1/2})O_3-PbZrO_3-PbTiO_3$ 세라믹스의 전기적 특성)

  • 강도원;김태열;김범진;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.297-299
    • /
    • 1999
  • Effects of additives on the ceramic and electrical properties of Pb(Y$_{1}$2/Ta$_{1}$2/)O$_3$-PbZrO$_3$-PbTiO$_3$ceramics in a perovskite type structure were investigated. The dielectric and piezoelectric properties of the base composition were improved markedly through selection of Fe$_2$O$_3$ additives in proper amounts. The composition Pb(Y$_{1}$2/Ta$_{1}$2/)O$_3$-PbZrO$_3$-PbTiO$_3$ obtained the dielectric constant ($\varepsilon$$_{r}$=1,425). Also, electromechanical couping factors for planar(k$_{p}$) and piezoelectric constant(d$_{33}$) were obtained 0.50 and 294[pC/N] at the additives 0wt% Fe$_2$O$_3$ respectively. The mechanical quality facor(Q$_{m}$) of Pb(Y$_{1}$2/Ta$_{1}$2/)O$_3$-PbZrO$_3$-PbTiO$_3$+Fe$_2$O$_3$(0.3 wt%) is about 510.510.510.

  • PDF