• 제목/요약/키워드: 3Y-$ZrO_2$

검색결과 1,705건 처리시간 0.035초

솔-젤법에 의한 $SiO_2-ZrO_2$계 무반사 박막의 제조 (Fabrication of Sol-Gel derived Antireflective Thin Films of $SiO_2-ZrO_2$ System)

  • 김병호;홍권;남궁장
    • 한국세라믹학회지
    • /
    • 제32권5호
    • /
    • pp.617-625
    • /
    • 1995
  • In order to reduce reflectance of soda-lime glass having average reflectance of 7.35% and refractive index of 1.53, single (SiO2), double (SiO2/20SiO2-80ZrO2), and triple (SiO2/ZrO2/75SiO2-25ZrO2) layers were designed and fabricated on the glass substrate by Sol-Gel method. Stble sols of SiO2-ZrO2 binary system for antireflective (AR) coatings were synthesized with tetraethyl orthosilicate (TEOS) and zirconium n-butoxide as precursors and ethylacetoacetate (EAcAc) as a chelating agent in an atmosphere environment. Films were deposited on soda-lime glass at the withdrawal rates of 3~11 cm/min using the prepared polymeric sols by dip-coating and they were heat-treated at 45$0^{\circ}C$ for 10 min to obtain homogeneous, amorphous and crack-free films. In case of SiO2-ZrO2 binary system, refractive index of film increased with an increase of ZrO2 mol%. Designed optical constant of films could be obtained through varying the withdrawal rate. In the visible region (380~780nm), reflectance was measured with UV/VIS/NIR Spectrophotometer. Average reflectances of the prepared single-layer [SiO2 (n=1.46, t=103nm)], double-layer [SiO2 (n=1.46, t=1-4nm)/20SiO2-80ZrO2 (n=1.81, t=82nm)], and triple-layer [SiO2 (n=1.46, t=104nm)/ZrO2 (n=1.90, t=80nm)/75SiO2-25ZrO2 (n=1.61, t=94 nm)] were 4.74%, 0.75% and 0.38%, respectively.

  • PDF

열가수분해 및 수열결정화에 의한 구형 ZrO2 분말의 합성 (Synthesis of Spherical ZrO2 Powders by Thermal Hydrolysis and Hydrothermal Crystallization)

  • 조철희;김명희;최재영;김도경
    • 한국세라믹학회지
    • /
    • 제39권4호
    • /
    • pp.420-426
    • /
    • 2002
  • 가열가수분해반응에 의하여 제조된 구형의 $ZrO_2$ 겔을 수열결정화시켜 순수한 $ZrO_2$ 분말과 $Y2_O_3$, CaO 등 상안정화제가 도핑된 $ZrO_2$ 분말을 합성하였다. 합성된 $ZrO_2$ 결정분말들은 평균 10nm 크기의 일차 입자들로 구성된 이차입자들이었다. 이차입자의 평균 크기는 $0.4{\mu}m$였고, 수열결정화과정에서 겔의 구형 형상이 그대로 유지되었으며 일차 입자들 사이에는 약한 응집으로 존재하였다. 입자모양, 크기, 상분율, 도핑된 분율 등을 SEM, TEM, XRD, ICP로 연구하였고 구형 겔의 수열결정화기구를 논의하였다.

$ZrO_2(Y_2O_3)$계 세라믹스의 소결성과 전기전도도에 대한 $ M_2O_3$의 영향 (II): $ZrO_2-Y_2O_3-Sb_2O_3$계 세라믹스 (Effect of $ M_2O_3$ on the Sinterbility and Electrical Conductivity of $ZrO_2(Y_2O_3)$ System(II) : Ceramics of the $ZrO_2(Y_2O_3)$-$Sb_2O_3)$ System)

  • 오영재;정형진;이희수
    • 한국세라믹학회지
    • /
    • 제23권6호
    • /
    • pp.37-44
    • /
    • 1986
  • Yttria-antimonia-stabilized zirconia was investigated with respect to the amount of $Sb_2O_3$ addition in the range of 0.5~5mole% to the base composition of $(ZrO)_{0.92}(Y_2O_3)_{0.08}$ The sinterbility modulus of rupture Vickers hardness evaporation of components phase form-tion and mcicrostructure were evaluated with antimonia content. Also two probe A. C conductivity measurement was subjected to all specimens and the best results are achieved with 1mol% $Sb_2O_3$ as a sinter agent and relative density of~98% obtained at 140$0^{\circ}C$ and this composition has a maximum electrical conductivity due to the possible substition of $Sb^{3+}$ for $Zr^{4+}$ site. The effect of $Sb_2O_3$ on the electrical conductivity of th bulk and the grain boundaries has on investigated using frequency dispersion analysis (5~106 Hz) Antimonia addition has a negative in-fluence on both the bulk and the grain boundary conductivity except for a 1 mon% addition. The additive antimonia has improve a modulus of rupture to 60~MPa due to metastable-tetragonal phase apparence and decrease the hardness with increasing the $Sb_2O_3$ content.

  • PDF

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

고상반응에 의하여 제조된 Li2ZrO3의 이산화탄소 흡수 및 소결 특성 (Carbon Dioxide Sorption Properties and Sintering Behavior of Lithium Zirconate Prepared by Solid-State Reaction)

  • 우상국;이시우;유지행
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.309-314
    • /
    • 2006
  • We synthesized lithium zirconate using solid-state reaction and analyzed thermal properties (TG/DTA) of starting materials and the synthesized one. When $Li_2ZrO_3$ powder was exposed to $CO_2$ environment at $500^{\circ}C$, 93% of the theoretical absorption weight was gained within 280 min with fairly high sorption rate. Almost all the absorbed $CO_2$ was generated by heating the sample to $800^{\circ}C$. We also investigated densification behavior of $Li_2ZrO_3$ under $CO_2$ environment. By sintering $Li_2ZrO_3$ at $760^{\circ}C$ using 2-step process, we obtained dense product, composed mainly of $Li_2ZrO_3\;and\;ZrO_2$, with relative density of 92%.

CaO에 의하여 부분 안정화된 $ZrO_2$의 고온 전기 전도도에 대한 연구 (Investigation of High Temperature Electrical Conductivity of CaO-partially Stabilized $ZrO_2$)

  • 변수일
    • 한국세라믹학회지
    • /
    • 제16권4호
    • /
    • pp.213-224
    • /
    • 1979
  • The present work was undertaken: (1) to determine if CaO-partially stabilized $ZrO_2$ prepared by Hot Petroleum Drying Method would show better ionic conductor as an oxygen sensor in molten metals than that prepared by Oxide Wet Mixing Method and than CaO-fully stabilized $ZrO_2$, and (2) to understand the nature of conduction mechanism of CaO-partially stabilized $ZrO_2$ by a comparison of measured electrical conductivity data with theory on defect structure of pure monoclinic $ZrO_2$ and fully stabilized cubic $ZrO_2$. The DC electrical conductivity was measured by 3-probe technique and the AC electrical conductivity by 2-probe technique as a function of temperature in the range 973-1373 K and oxygen partial pressure in the range 10-1-10-25Mpa. The results of the experiments were as follows: 1. CaO-partially stabilized $ZrO_2$ prepared by Hot petroleum Drying Method showed at T=1094-1285 K and $Po_2$=10-7-10-25 MPa a nearly ionic conduction with 4 times higher conductivity than that prepared by Oxide Wet Mixing Method. 2. High-oxygen pressure conductivity tends toward a Po_2^{+1/5}-Po_2^{+1/6}$dependence. An analysis of possible defect structures suggests that CaO-partially stabilized $ZrO_2$ has an anti-Frenkel defect in which singly or doubly ionized oxygen interstitials and defect electrons predominate at T=1094-1285 K and $Po_2$=10-1-10-7MPa. 3. The activation energy for pure electron hole-conduction and ionic conduction of CaO-partially stabilized $ZrO_2$ was found to be 130 KJ/mol at T=973-1373 K, $Po_2$=2, 127 10-2 MPa(air) and 153KJ/mol at T=1094-1285 K respectively.

  • PDF

Li2ZrO3로 CO2 제거시 알칼리 첨가제 효과 (Effects of Alkaline Additives on CO2 Removal by Li2ZrO3)

  • 박주원;강동환;조영도;유경선;이재구;김재호;한춘
    • Korean Chemical Engineering Research
    • /
    • 제44권5호
    • /
    • pp.535-539
    • /
    • 2006
  • 가연성 폐기물 가스화반응으로 생성되는 합성가스내의 $CO_2$ 제거반응에서 $Li_2ZrO_3$와 알칼리염 첨가제의 효과를 열중량 분석기를 이용하여 그 특성을 연구하였다. $Li_2ZrO_3$는 고체상태의 $ZrO_2$$Li_2CO_3$를 합성하여 제조하였고, 반응성향상을 위하여 $K_2CO_3$, $Na_2CO_3$, NaCl, LiCl 등의 알칼리염을 첨가한 후 열처리하여 사용하였다. 첨가한 알칼리염에 따른 반응성 향상은 $K_2CO_3>NaCl>LiCl>Na_2CO_3$ 순으로 나타났고 이는 $Li_2CO_3$의 partial melting에 기인한 것으로 사료된다. 반응 시료의 SEM 분석 결과 용융상태의 존재를 확인할 수 있었고, XRD를 통해 첨가된 알칼리염들의 화학적 성분 변화는 일어나지 않는 것으로 확인되었다. NaCl을 사용한 경우 반응 초기에 60분 정도의 유도시간이 발생하였으며, $Na_2CO_3$가 첨가된 경우 $700{\sim}750^{\circ}C$에서도 $Li_2ZrO_3$$CO_2$ 제거반응에 의해 생성된 $Li_2CO_3$의 분해가 유도되지 않아 반응성 감소현상이 나타나지 않았다.

상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive)

  • 신용덕;주진영;고태헌;이정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

Interfacial properties of ZrO$_2$ on silicon

  • Lin, Y.S.;Puthenkovilakam, R.;Chang, J.P.
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제16권9호
    • /
    • pp.65.1-65
    • /
    • 2003
  • The interface of zirconium oxide thin films on silicon is analyzed in detail for their potential applications in the microelectronics. The formation of an interfacial layer of ZrSi$\sub$x/O$\sub$y. with graded Zr concentration is observed by the x-ray photoelectron spectroscopy and secondary ion mass spectrometry analysis. The as-deposited ZrO$_2$/ZrSi$\sub$x/O$\sub$y//Si sample is thermally stable up to 880$^{\circ}C$, but is less stable compared to the ZrO$_2$/SiO$_2$/Si samples. Post-deposition annealing in oxygen or ammonia improved the thermal stability of as-deposited ZrO$_2$/ZrSi$\sub$x/O$\sub$y/Si to 925$^{\circ}C$, likely due to the oxidation/nitridation of the interface. The as-deposited film had an equivalent oxide thickness of∼13 nm with a dielectric constant of ∼21 and a leakage current of 3.2${\times}$10e-3 A/$\textrm{cm}^2$ at 1.5V. Upon oxygen or ammonia annealing, the formation of SiO$\sub$x/ and SiH$\sub$x/N$\sub$y/O$\sub$z/ at the interface reduced the overall dielectric constants.

  • PDF

Band Gap Tuning in Nanoporous TiO2-ZrO2 Hybrid Thin Films

  • Kim, Chang-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2333-2337
    • /
    • 2007
  • Nanoporous TiO2 and ZrO2 thin films were spin-coated using a surfactant-templated approach from Pluronic P123 (EO20PO70EO20) as the templating agent, titanium alkoxide (Ti(OC4H9)4) as the inorganic precursor, and butanol as a the solvent. The control of the electronic structure of TiO2 is crucial for its various applications. We found that the band gap of the hybrid nanoporous thin films can be easily tuned by adding an acetylacetonestabilized Zr(OC4H9)4 precursor to the precursor solution of Ti(OC4H9)4. Pores with a diameter of 5 nm-10 nm were randomly dispersed and partially connected to each other inside the films. TiO2 and ZrO2 thin films have an anatase structure and tetragonal structure, respectively, while the TiO2-ZrO2 hybrid film exhibited no crystallinity. The refractive index was significantly changed by varying the atomic ratio of titanium to zirconium. The band gap for the nanoporous TiO2 was estimated to 3.43 eV and that for the TiO2-ZrO2 hybrid film was 3.61 eV.