• Title/Summary/Keyword: 3T3-L 1

Search Result 5,125, Processing Time 0.048 seconds

Adipocyte-Related Genes and Transcription Factors were Affected by siRNA for Aromatase Gene during 3T3-L1 Differentiation (지방세포 분화중인 3T3-L1 세포에서 아로마테이즈 siRNA 처리에 의한 지방관련 유전자와 전사인자의 발현 조절)

  • Jeong, Dong-Kee
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1600-1605
    • /
    • 2008
  • This study was performed to verify the gene expression of 3T3-L1 using the siRNA of the aromatase gene, which is the estrogen synthesis enzymes. First of all three pairs of siRNA were designed from the CYP19A1 (aromatase) and analyzed the formation of fat cell mechanism by transferring gene to 3T3-L1 and differentiating it. As a result, the expression of leptin gene, which is the main gene causing the obesity, was controlled and the cause of the obesity is related with the insulin specifically. The overexpression of adiponectin and adipsin was observed. This result showed that the formation of the fat was controlled a little without any side effect by obstructing a specific material out of all the signal systems in the fat formation. This study will be an important clue to make it clear that the lack or overexpression of estrogen might be the cause of fat formation mechanism.

Effects of Fluid Shear Stress on 3T3-L1 Preadipocytes (유체전단응력에 의하여 3T3-L1 지방세포가 받는 영향)

  • Lee, Jeongkun;Lee, Yeong Hun;Jin, Heewon;Lee, Seohyun;Kim, Chi Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.168-174
    • /
    • 2018
  • Adipocytes affect obesity through the regulation of lipid metabolism. Physical loading is an important regulator of fat tissue. There are ongoing in vitro studies inducing mechanotransduction on 3T3-L1 preadipocytes with mechanical stimulus in order to treat obesity by inhibiting adipogenesis and provoking cell death. In this study, our goal was to suggest a new therapy for obesity by investigating whether fluid shear stress (FSS) changes transcription factors on 3T3-L1 related with adipogenesis and cell death. FSS loading was applied to 3T3-L1 preadipocytes at 1Pa and 1Hz. After loading, bright field images were taken and an immunofluorescence assay was conducted to observe actin stress fiber formation. Western blot analysis was conducted to identify the activation of the ERK pathway as well as the adipogenic factors, which including C/EBPs and $PPAR{\gamma}$. The expression of osteopontin, a protein related to inflammation in adipose tissue, and cell death related factors, Bax, Bcl-2, and Beclin, were also measured. Results showed that FSS stimulated the formation of actin stress fibers in 3T3-L1 and also that the activation of C/EBPs decreased significantly when compared with the control group. $PPAR{\gamma}$ activation in the 2 hour FSS group was lower than the 1 hour FSS group, which implied that the results were time dependent. Additionally, there were no differences in the expression of cell death factors after FSS loading. In summary, similar to other fibroblasts, the formation of actin stress fibers induced by mechanotransduction may affect the differentiation of 3T3-L1, leading to inhibition of adipogenesis and inflammation.

Effects of Yeoldahanso-tang, a Sasang Constitutional Herbal Prescription for Taeeumin, on the Adipogenesis in 3T3-L1 Cells (태음인(太陰人) 열다한소탕(熱多寒少湯)이 3T3-L1 지방전구세포(脂肪前驅細胞) 분화(分化)에 미치는 영향(影響))

  • Yoo, Sae-Rom;Jeong, Soo-Jin;Shin, Hyeun-Kyoo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.24 no.4
    • /
    • pp.75-83
    • /
    • 2012
  • Objectives : Although Yeoldahanso-tang (YDHST) has been widely used for treatment of obesity and its related diseases such as hyperinsulinemia and hypertension for Taeeumin, no scientific evidence has reported yet to support its ability to work against these metabolic disorders. Our study was aimed to investigate the anti-obesity effect of YDHST extract on the cellular differentiation of 3T3-L1 preadipocytes into adipocytes. Methods : 3T3-L1 preadipocytes were differentiated into adipocytes by adding insulin, dexamethasone and 3-isobutyl-1-methylxanthine (IBMX) for 8 days in the absence or presence of YDHST extract. Anti-obesity effects of YDHST extract were evaluated by Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, triglyceride contents, and leptin production. Results : YDHST extract remarkably prevented lipid accumulation with no cytotoxicity in the differentiated 3T3-L1 cells. In addition, YDHST extract decreased contents of triglyceride 3T3-L1 adipocytes. Consistently, YDHST extract caused a significant inhibition of GPDH activity and leptin production in a dose-dependent manner. Conclusions : Our findings suggest that Sasang constitutional herbal formula YDHST for Tae-eumin has anti-obesity activity by regulation of the adipogenesis process in vitro. Additional study will be required to further confirm the inhibitory effect on adipocyte differentiation by using in vivo animal model.

Inhibitory Effect of Eggplant Extract on Adipocyte Differentiation in 3T3-L1 Cells (가지 물추출물의 3T3-L1 지방전구세포 분화 억제효능)

  • Lee, Mi-Kyeong;Liu, Qing;Hwang, Bang-Yeon;Kim, Sun-Yeou;Lee, Jae-Hak
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.309-313
    • /
    • 2011
  • Abnormal growth of adipocyte characterized by increased cell numbers and differentiation is considered as an major pathological characteristic feature in obesity. Thus, inhibition of mitogenesis of preadipocytes and their differentiation to adipocytes would be beneficial for the prevention and inhibition of obesity. In the present study, we attempted to evaluate anti-adipogenic activity of eggplants (the fruits of Solanum melongena L.) employing preadipocytes cell line, 3T3-L1 as an in vitro assay system. Water extract of eggplants significantly inhibited adipocyte differentiation when treated during adipocyte differentiation process, as assessed by measuring fat accumulation using Oil Red O staining. Eggplant extract, however, showed little effects on fully differentiated adipocytes. Eggplant didn't show significant toxicity up to 500 ${\mu}g$/ml to the 3T3-L1 cells. Further studies with interval treatment demonstrated that eggplant exerted inhibitory activity on adipocyte differentiation via acting on early stage of adipogenesis. Conclusively, eggplants are suggested to be beneficial for the prevention of obesity.

The Production of Egg Yolk Immurnoglobulin (IgY) Raised against 3T3L-1 Cell Membrane Protein and the Control of Adipocytes Differentiation (3T3L-1세포의 막단백질에 대한 난황면역글로뷸린 (IgY)의 생산과 지방세포의 분화조절작용)

  • 김상윤;황성구;구의섭;고태송
    • Korean Journal of Poultry Science
    • /
    • v.26 no.3
    • /
    • pp.179-188
    • /
    • 1999
  • The present was undertaken to establish a model for the control of adipocytes differentiation by using antibody from egg yolk. The emulsion of membrane protein of 3T3L-1 cell membrane protein with the complete Freund's adjuvant was firstly immunized in layer. Second and third boosting were undertaken with two weeks intervals by injection of the emulsion of the same antigen with the incomplete Freund's adjuvant. After 4 week of the first immunization, eggs were collected and antibody (IgY) was purified from egg yolk. The purity of IgY was 60-98% determined by single radial immunodiffusion (SRID) methods. Titer value of the antibody showed high reactiviy for the preadipocytes membrane protein measured by ELISA. When the IgY was added in the test media containing either 2.5% porcine serum or 10% FBS(control), the differentiation of 3T3L-1 cells and Glycerol-3-phosphate dehydrogenase(GPDH) activities was significantly decreased compared to the control cells(p〈0.05). When mice were subcutaneously injected with IgY raised against membrane protein of 3T3L-1 cells for 3 weeks, adipose tissue mass around ovary was tended to be decreased in female mice compared to those of control mice. It is suggested that a potential for manipulating of lipid accumulation through decrease in 3T3L-1 cell differentiation and fat accumulation in female mice by IgY treatment.

  • PDF

2,7-Phloroglucinol-6,6-Bieckol Increases Glucose Uptake by Promoting GLUT4 Translocation to Plasma Membrane in 3T3-L1 Adipocytes (2,7-Phloroglucinol-6,6-Bieckol의 3T3-L1 지방세포에서 GLUT4 활성화를 통한 포도당 흡수 증진 효과)

  • Lee, Hyun-Ah;Han, Ji⁃Sook
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.729-735
    • /
    • 2021
  • Type 2 diabetes occurs when there is an abnormality in the tissue's ability to absorb glucose. Glucose uptake and metabolism by insulin are the basic mechanisms that maintain blood sugar. Glucose uptake goes through various signaling steps initiated by the binding of insulin to receptors on the cell surface. In line with the foregoing, the purpose of this study was to investigate the effect of 2,7-phloroglucinol-6,6-bieckol (PHB), an active compound isolated from Ecklonia cava, on glucose uptake in 3T3-L1 adipocytes. Notably, PHB increased glucose uptake in a dose-dependent manner owing to the enhanced glucose transporter type 4 (GLUT4) expression in the plasma membrane of 3T3-L1 adipocytes. These effects of PHB were attributed to the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB or AKT), as well as to the phosphoinositide 3-kinase (PI3K) activation in the insulin signaling pathway. PHB also stimulated 5' AMP-activated protein kinase (AMPK) phosphorylation and activation. The phosphorylation and activation of the PI3K/AKT and AMPK pathways by PHB were identified using wortmannin (a PI3K inhibitor) and compound C (an AMPK inhibitor). In this study, we showed that PHB can increase glucose uptake in 3T3-L1 adipocytes by promoting GLUT4 translocation to the plasma membrane via the PI3K and AMPK pathways. The results indicate that PHB may help improve insulin sensitivity.

Effect of Acacia catechu Extract on 3T3-L1 Preadipocyte Differentiation (지방세포의 분화에 미치는 Acacia catechu 추출물의 항비만 효과)

  • Kim, Dong-Gyu;Kang, Min Jung;Suh, Hwa Jin;Kwon, Oh Oun;Shin, Jung Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1107-1113
    • /
    • 2016
  • The purpose of this study was to investigate the effects of catechu water extract on adipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated with adipogenic regents by incubation for 9 days in the absence or presence of catechu extract ranging from $1{\sim}200{\mu}g/mL$. The effect of catechu extracts on cell proliferation of 3T3-L1 preadipocytes was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of catechu extracts on 3T3-L1 differentiation was examined by measuring intracellular lipid droplet and triglyceride contents. These results were obtained from preadipocyte proliferation and adipocyte differentiation of 3T3-L1. Catechu extracts inhibited lipid accumulation and remarkably decreased triglyceride contents in 3T3-L1 preadipocytes at a concentration showing no cytotoxicity. The anti-adipogenic effects of catechu appeared to be mediated by significant down-regulation of expression of peroxisome proliferator-activated receptor ${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element-binding protein 1c proteins apart from expression of hormone-sensitive lipase. We suggest that catechu extracts significantly inhibit adipogenesis and can be used for regulation of obesity.

Effects of Pueraria lobata Root Ethanol Extract on Adipogenesis and Lipogenesis During 3T3-L1 Differentiation into Adipocytes

  • Lee, Chae Myoung;Yoon, Mi Sook;Kim, Young Chul
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.191-201
    • /
    • 2015
  • We evaluated the inhibitory effect of Pueraria lobata root ethanol extract (PLREE) on lipid accumulation during 3T3-L1 differentiation to adipocytes by measuring the intracellular expression of adipogenic, lipogenic, and lipolytic markers and lipid accumulation. The total polyphenol and flavonoid content of PLREE were 47 and 29 mg/g, respectively. The electron donating capacity of PLREE at $1,000{\mu}g/mL$ was 48.8%. Treatment of 3T3-L1 preadipocytes with 100, 250, or $500{\mu}g/mL$ PLREE for 8 days dose-dependently promoted the differentiation of 3T3-L1 cells. In contrast, the lipid content of PLREE-treated cells was significantly reduced by 7.8% (p < 0.05), 35.6% (p < 0.001), and 42.2% (p < 0.001) following treatment with 100, 250, and $500{\mu}g/mL$ PLREE, respectively, as compared to differentiated control cells. PLREE upregulated peroxisome proliferator-activated receptor ${\gamma}$ mRNA and protein, and sterol regulator element-binding protein-1c mRNA levels, but did not affect CCAAT/enhancer binding-protein ${\beta}$ and ${\alpha}$ mRNA levels. PLREE also downregulated acetyl-CoA carboxylase mRNA and protein, fatty acid synthase (FAS) protein, and leptin mRNA levels, but did not affect FAS mRNA expression. PLREE upregulated adipose triglyceride lipase mRNA and protein expression, and hormone-sensitive lipase (HSL) protein expression, but did not affect HSL mRNA expression. In conclusion, we found that PLREE enhanced adipogenesis, but reduced lipogenesis, resulting in decreased lipid accumulation in 3T3-L1 cells.

Comparative Study on the Differentiation Effect of Adipogenesis in 3T3-L1 Preadipocyte by 65 Herbal Medicine Prescriptions (65종 한약처방이 3T3-L1 지방전구세포의 지방 분화에 미치는 효능 비교 연구)

  • Choi, Hye-Min;Yu, Byung-Woo;Kim, Min-Ju;Kim, Jung-Ok
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.78-87
    • /
    • 2020
  • Objectives: To expand and provide information on the efficacy of herbal medicines, anti-obesity effects were evaluated. In many studies, plant-derived components with anti-obesity efficacies have been investigated for their potential inhibitory effects on 3T3-L1 preadipocyte cells. The purpose of this study was to investigate the anti-obesity effects of 65 herbal medicine in 3T3-L1 preadipocyte cells. Methods: Preferentially, 3T3-L1 cells were treated with 65 herbal medicines (500 ㎍/mL) during differentiation for 8 days. Next, 3T3-L1 cells were treated with selected herbal medicines at concentrations ranging from 50 to 200 ㎍/mL during differentiation for 8 days. The accumulation of lipid droplets was determined by Oil Red O staining. The expressions of genes related to adipogenesis were measured by reverse transcription polymerase chain reaction and Western blot analyses. Results: Among the 65 kinds of herbal medicines, 13 herbal medicines that been shown to be effective against the accumulation of lipid droplets were selected. Finally, selected Banhasasim-tang and Samhwangsasim-tang showed inhibitory activity on adipocyte differentiation at 3T3-L1 preadipocytes without affecting cell toxicity. In addition, Banhasasim-tang and Samhwangsasim-tang significantly reduced the expression levels of several adipocyte marker genes including peroxisome proliferator activated receptor-γ and CCAAT/enhancer binding protein-α. Conclusions : These results suggest that the ability of Banhasasim-tang and Samhwangsasimtang has inhibited overall adipogenesis and lipid accumulation in the 3T3-L1 cells. Banhasasim-tang and Samhwangsasim-tang may be a promising medicine for the treatment of obesity and related metabolic disorders.

The Lipid Efflux Effects of Dichloromethane Extract from Orostachys japonicus in 3T3-L1 Adipocyte Cells (3T3-L1 지방세포에 대한 와송 디클로로메탄 추출물의 지질 대사 개선에 관한 연구)

  • Kim, Soo-Hwan;Lee, Hyeong-Seon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.514-520
    • /
    • 2019
  • This study investigated the improved lipid metabolism effect of 3T3-L1 cells induced by adipocytes using the dichloromethane (DCM) fraction in the organic solvent extract of Wassong (Orostachys japonicus). To confirm the cell cytotoxicity, each of 6 fractions of organic solvent extracts (EtOH, Hexane, DCM, EtOAc, BuOH, and H2O) was examined using MTS assay. As a result, it was confirmed that the DCM extract was stable over the whole range of concentrations, and a DCM fraction was used to confirm the improved lipid metabolism effect. Lipid excretion was measured to confirm the change of lipid metabolism. 3T3-L1 cells induced by adipocytes were treated with DCM extract and stained with oil-red O to evaluate lipid accumulation. As a result, it was confirmed that the lipid efflux was significantly improved. In order to confirm the mechanism of lipid efflux, the mRNA expressions of ABCA1 and ABCG1, which are lipid transport proteins, were confirmed by real-time PCR. Therefore, the present study confirmed that the DCM extract from Orostachys japonicus has the effect of improving the lipid metabolism on 3T3-L1 adipocytes. In addition, the results of this study will be used as the basis for the development of functional foods using Orostachys japonicus and also for conducting research on the detailed mechanisms.