• Title/Summary/Keyword: 3DOF Ultra-precision Mechanism

Search Result 5, Processing Time 0.023 seconds

Optimum Design of a 3-DOF Ultra-Precision Positioning Mechanism Using Boosters (부스터를 이용한 3자유도 초정밀 위치결정 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.101-109
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been proposed. However, previous designs are hard to satisfy the functional requirements of the system due to difficulty in modeling and optimizing process applying an independent axiomatic design. Therefore, this paper proposes a new design and design-order based on semi-coupled axiomatic design. A planar 3 DOF parallel type micro mechanism is chosen as an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimal design has been carried out. To check the effectiveness of the optimal parameters obtained from theoretical approach, simulation is performed by FEM. The simulation result shows that a natural frequency of 200.53Hz and a workspace of $2000{\mu}m{\times}2000{\mu}m$ can be ensured, which is in very close agreement with the specified goal of design.

The Optimum Design of a Spatial 3-DOF Manipulator Using Axiomatic Design (공리적 설계를 이용한 공간형 3자유도 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.52-60
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been developed. However, previous designs are difficult to satisfy the functional requirements of the system due to difficulty in modeling and optimization process applying fur the independent axiomatic design. Therefore, this paper suggests a new design and design procedure based on semi-coupled, axiomatic design. A spatial 3-DOF parallel type micro mechanism is chosen aa an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimum design is conducted. To check the effectiveness of the optimal parameters obtained by theoretical approach, simulation has been performed by FEM.

Lost Motion Analysis for Nonlinearity Identification of a 6-DOF Ultra-Precision Positioning Stage (6-자유도 초정밀 위치 결정 스테이지의 비선형성 식별을 위한 로스트 모션 해석)

  • Shin, Hyun-Pyo;Moon, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • This paper describes lost motion analysis for a novel 6-DOF ultra-precision positioning stage. In the case of flexure hinge based precision positioning stage, lost motion is generated when the displacement of actuator is not delivered completely to the end-effector because of the elasticity of flexure hinge. Consequently, it is need to compute amount of lost motion to compensate the motion or to decide appropriate control method for precision positioning. Lost motion analysis for the vertical actuation unit is presented. The analysis results are presented in two ways: analytic and numerical analyses. It is found that they closely coincide with each other by 1% error. In finite element analysis result, the amount of lost motion is turned out to be about 3%. Although, the amount is not so large, it is necessary procedure to check the lost motion to establish the control method.

Development and Performance Evaluation of Fine Stage for 3-DOF Error Compensation of a Linear Axis (직선 이송축의 3자유도 오차 보정을 위한 미세 구동 스테이지 개발 및 성능 평가)

  • Lee, Jae Chang;Lee, Min Jae;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • A fine stage is developed for the 3-DOF error compensation of a linear axis in order to improve the positioning accuracy. This stage is designed as a planar parallel mechanism, and the joints are based on a flexure hinge to achieve ultra-precise positioning. Also, the effect of Abbe's offsets between the measuring and driving coordinate systems is minimized to ensure an exact error compensation. The mode shapes of the designed stage are analyzed to verify the desired 3-DOF motions, and the workspace and displacement of a piezoelectric actuator (PZT) for compensation are analyzed using forward and inverse kinematics. The 3-DOF error of a linear axis is measured and compensated by using the developed fine stage. A marked improvement is observed compared to the results obtained without error compensation. The peak-to-valley (PV) values of the positional and rotational errors are reduced by 92.6% and 91.3%, respectively.

An Ultraprecise Machining System with a Hexapod Device to Measure Six-Degree-Of-Freedom Relative Motions Between The Tool And Workpiece

  • Oiwa, Takaaki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.3-8
    • /
    • 2007
  • A machining system that generates accurate relative motions between the tool and workpiece is required to realize ultra precise machining or measurements. Accuracy improvements for each element of the machine are also required. This paper proposes a machining system that uses a compensation device for the six-degree-of-freedom (6-DOF) motion error between the tool and workpiece. The compensation device eliminates elastic and thermal errors of the joints and links due to temperature fluctuations and external forces. A hexapod parallel kinematics mechanism installed between the tool spindle and surface plate is passively actuated by a conventional machine. Then the parallel mechanism measures the 6-DOF motions. We describe the conception and fundamentals of the system and test a passively extensible strut with a compensation device for the joint errors.