• Title/Summary/Keyword: 3DOF

Search Result 608, Processing Time 0.025 seconds

A neural network based sensor modeling for 6-DOF motions of objects

  • Park, Won-Shik;Hyungsuck Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.97.5-97
    • /
    • 2002
  • A sensor modeling via artificial neural network is presented in this paper. The optical sensor has been designed to treasure absolute 3-dimensional positions and orientations of objects in 6-DOF. The method utilizes a triangular pyramidal mirror having an equilateral cross-sectional shape referred as 3-facet mirror. The mirror has three lateral reflective surfaces inclined 45 degrees to its bottom surface. The 3-facet mirror is mounted on the object whose 6-DOF motion is to be measured. As optical components, a He-Ne laser source and three position-sensitive detectors(PSD) are used. The laser beam is emitted from the He-Ne laser source located at the upright position and vertically incident o...

  • PDF

Microcontroller based split mass resonant sensor for absolute and differential sensing

  • Uma, G.;Umapathy, M.;Kumar, K. Suneel;Suresh, K.;Josephine, A. Maria
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.279-290
    • /
    • 2009
  • Two degrees of freedom resonant systems are employed to improve the resonant property of resonant sensor, as compared to a single degree of freedom resonant system. This paper presents design, development and testing of two degrees of freedom resonant sensor. To measure absolute mass, cantilever shaped two different masses (smaller/absorber mass and bigger/drive mass) with identical resonant frequency are mechanically linked to form 2 - Degree-of-Freedom (DOF) resonator which exhibits higher amplitude of displacement at the smaller mass. The same concept is extended for measuring differential quantity, by having two bigger mass and one smaller mass. The main features of this work are the 3 - DOF resonator for differential detection and the microcontroller based closed loop electronics for resonant sensor with piezoelectric sensing and excitation. The advantage of using microcontroller is that the method can be easily extended for any range of measurand.

Tension Based 7 DOEs Force Feedback Device: SPIDAR-G

  • Kim, Seahak;Yasuharu Koike;Makoto Sato
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • In this paper, we intend to demonstrate a new intuitive force-feedback device for advanced VR applications. Force feed-back for the device is tension based and is characterized by 7 degrees of freedom (DOF); 3 DOF for translation, 3 DOF for rotation, and 1 DOF for grasp). The SPIDAR-G (Space Interface Device for Artificial Reality with Grip) will allow users to interact with virtual objects naturally by manipulating two hemispherical grips located in the center of the device frame. We will show how to connect the strings between each vertex of grip and each extremity of the frame in order to achieve force feedback. In addition, methodologies will be discussed for calculating translation, orientation and grasp using the length of 8 strings connected to the motors and encoders on the frame. The SPIDAR-G exhibits smooth force feedback, minimized inertia, no backlash, scalability and safety. Such features are attributed to strategic string arrangement and control that results in stable haptic rendering. The design and control of the SPIDAR-G will be described in detail and the Space Graphic User Interface system based on the proposed SPIDAR-G system will be demonstrated. Experimental results validate the feasibility of the proposed device and reveal its application to virtual reality.

A study on the effects of active suspension upon vehicle handling (능동 현가장치가 차량의 핸들링에 미치는 영향에 관한 연구)

  • Lee, Jung-Sup;Kwon, Hyok-Jo;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.603-610
    • /
    • 1998
  • This paper develops a 7 DOF vehicle model to study the effects of the active suspension on ride. The model is used to derive a control law for the active suspension using a full state linear optimal control technique. A wheelbase preview type active suspension is also considered in the control law derivation. The time delay between wheelbases is approximated using Pade approximation technique. The ride model is extended to a 14 DOF handling model. The 14 DOF handling model includes lateral, longitudinal, yaw and four wheel spin motions in addition to the 7 DOF ride model. A control law which is derived considering only ride related parameters is used to study the effects of the active suspension on a vehicle handling. J-turn maneuver simulation results show that the active suspension has a slower response in lateral acceleration and yaw rate, a bigger steady state lateral acceleration and an oversteer tendency. Lane changing maneuver simulation results show that the active suspension has a little bigger lateral acceleration but a much smaller roll angle and roll motion. Braking maneuver simulation results show that the active suspension has a much smaller pitch angle and pitch motion.

Stiffness Analysis of a Low-DOE Parallel Manipulator using the Theory of Reciprocal Screws (역나선 이론을 이용한 저자유도 병렬형 기구의 강성해석)

  • Kim Han Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.680-688
    • /
    • 2005
  • This paper presents a methodology for the stiffness analysis of a low-DOF parallel manipulator. A low-DOF parallel manipulator is a spatial parallel manipulator which has less than six degrees of freedom. The reciprocal screws of actuations and constraints in each leg can be determined by making use of the theory of reciprocal screws, which provide information about reaction forces due to actuations and constraints. When pure farce is applied to a leg, the leg stiffness is modeled as a linear spring along the line. For pure couple, it is modeled as a rotational spring about the axis. It is shown that the stiffness model of an it_DOF parallel nipulator consists of F springs related to actuations and 6-F springs related to constraints connected from the moving platform to the base in parallel. The 6x f Cartesian stiffness matrix is derived, which is the sum of the Cartesian stiffness matrices of actuations and constraints. Finally, the 3-UPU, 3-PRRR, and Tricept parallel manipulators are used as examples to demonstrate the methodology.

Tracking and Stabilization of a NV System for Marine Surveillance (해상감시용 NV 시스템의 추종 및 안정화)

  • Hwang, Seung-Wook;Kim, Jung-Keun;Song, Se-Woon;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • This paper presents the tracking and stabilization problem of a night vision system for marine surveillance. Both a hardware system and software modules are developed to control azimuth and elevation axes independently with compensation for ship motion. A two degree of freedom(2DOF) PID controller is designed and its parameters are tuned using a real-coded genetic algorithm(RCGA). Simulation demonstrates the effectiveness of the proposed method.

Design of a 6-DOF Parallel Haptic Rand Controller Consisting of 5-Bar Linkages and Gimbal Mechanisms (5절링크와 짐벌기구로 구성된 병렬형 6자유도 햅틱 핸드컨트롤러의 설계)

  • Ryu, Dong-Seok;Sohn, Won-Sun;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • A haptic hand controller (HHC) operated by the user’s hand can receive information on position and orientation of the hand and display force and moment generated in the virtual environment to the hand. In this paper, a 3-DOF hand controller is first presented, in which all the actuators are mounted on the fixed base by combining a 5-bar linkage and a gimbal mechanism. The 6-DOF HHC is then designed by connecting these two 3-DOF devices through a handle which consists of a screw and nut. Analysis using performance index is carried out to determine the dimensions of the device. The HHC control system consists of the high-level controller for kinematic and static analysis and the low-level controller for position sensing and motor control. The HHC used as a user interface to control the mobile robot in the virtual environment is given as a simple application.

Analysis of Parallel Mechanisms with Forward Position Closed-Form Solution with Application to Hybrid Manipulator (정위치 해석해를 가지는 병렬 메카니즘에 관한 분석과 혼합구조 매니퓰레이터로의 활용)

  • 김희국;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.324-337
    • /
    • 1999
  • In this work, a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. And a 6 DOF hybrid manipulator which consists of a 3-PPR type planar 3 DOF parallel mechanism and a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. Both 3 DOF mechanism modules have closed-form forward position solutions and particularly, 3-PSP spatial module has unique forward position solution. Firstly, the closed-form position analysis and first-order kinematic analysis for the proposed 3-PSP type module are carried out, and the first-order kinematic characteristics are examined via maximum singular value and the isotropic index of the mechanism. It is shown through these analyses that the mechanism has excellent isotrpic property throughout the workspace. Secondly, position and kinematic analysis of the 3-PPR planar module are briefly described. Thirdly, the forward position analysis for the 3-PPR 3-PSP type 6 degree-of-freedom hybrid mechanism consisting of a 3-PPR planar module and a 3-PSP spatial module is performed along with the analysis of the workspace size and first-order kinematic characteristics. The kinematic characteristics of the proposed hybrid manipulator are compared to those of geometrically similar Stewart manipulator.

  • PDF

Design of a 3-DOF Hip Module for Humanoid

  • So, Byung-Rok;Yi, Byung-Ju;Kim, Wheekuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.84.4-84
    • /
    • 2002
  • $\textbullet$ To achieve 3 high power-to-weight ratio, design of 3DOF hip module $\textbullet$ Using parallel mechanism and linear actuator consist of a ball-screw mechanism $\textbullet$ The kinematics analysis for the hip module $\textbullet$ A kinematic index to measure actuator power are introduced. $\textbullet$ It is demonstrated throught simulation that incorporation of redu ndant actuator into the hip module

  • PDF