• Title/Summary/Keyword: 3DAM

Search Result 1,713, Processing Time 0.03 seconds

A Study on Estimate of Evaluation Indices of Water Supply Capacity for Multipurpose Dam (다목적댐의 응수공급능력 평가지표 산정에 관한 연구)

  • Cha, Sang Hwa;Park, Gi Beom
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.197-204
    • /
    • 2004
  • In this study analyzed the reliability indices against the water supply ability of Andong dam. The water supply analysis of Andong dam used the HEC-5 model. So Andong dam simulated planed water-supply capacity of Andong dam as increase and decrease +5% ~ -5% of water supply quantity. Water-supply capacity of Andong dam estimated, deficit occurrence, deficit quantity, deficit period. As the results estimated reliability(occurrence based, time based, quantity based) and resiliency vulnerability and with water supply capacity evaluation indices of Andong dam. Also reliability(occurrence based, time based, quantity based), resiliency, vulnerability and resiliency indices are estimated to evaluated the performance of water supply on Andong dam, and their relationships are evaluated.

The Bibliographic Study of Dam su ( 痰嗽 ) (담수(痰嗽)에 대(對)한 문헌적(文獻的) 고찰(考察))

  • Choi, Sun-Yup;Han, Sang-Whan
    • The Journal of Internal Korean Medicine
    • /
    • v.12 no.2
    • /
    • pp.68-73
    • /
    • 1991
  • This study has been carried out to investigate Dam Su ( 痰嗽 ) by referring to 22 documents. The results were as follow ; 1. Dam Su ( 痰嗽 ) is caused by Dam ( 痰 ) made of irregular meals, Bi Hu ( 脾虛 ). Bi Seop ( 脾濕 ), Sik Juk ( 食積 ). 2. The symptom of Dam Su ( 痰嗽 ) is as follows ; Dam Chul Hae Ji ( 痰出咳止 ) Hung Kyuk Da Man ( 胸膈多滿 ) Da dam ( 多痰 ) Dam sung ( 痰聲 ) 3. The treatment of Dam Su ( 痰嗽 ) is as follows ; Chi Dam (治痰) Gun Bi Jo Seup ( 建脾燥濕 ) Chung Pae Wha Dam ( 淸肺化痰) Sun Gi ( 順氣 )

  • PDF

Seismic evaluation of cemented material dams -A case study of Tobetsu Dam in Japan

  • Arefian, Amir;Noorzad, Ali;Ghaemian, Mohsen;Hosseini, Abbas
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.717-733
    • /
    • 2016
  • Trapezoidal Cemented Sand and Gravel Dam, namely Trapezoid CSG, is a new type of dam. Due to lack of dynamic studies in the field of CSG dam, this research was performed to analyze Trapezoidal CSG dam using dynamic Finite element method with ABAQUS Software. To investigate possible earthquake-induced damages, fragility curves are plotted based on damage index, the length of the cracks created at the dam base and the area of cracked elements in the dam. The seismic analysis indicated that minimum and maximum tensions are generated in the heel and toe of the dam, respectively. According to the fragility curves, with increase in PGA, the possibility of the exceeding the defined limit state is increased. However, the rate of increment is significantly reduced after PGA=0.4 g. Also, the same result is achieved for the second limit state. The "area of cracked elements" is more conservative criterion than the "crack length at the dam base", especially at PGA<0.4 g. As conclusion, CSG dams, despite of being made of poor materials in comparison with concrete dams, show good resistance, and even in some situations, better performance than the weighted concrete dams.

Evaluation of Resistance of Concrete-Face Rockfill Dam to Seismic Loading Using Shaking Table Test (진동대시험을 이용한 콘크리트 표면 차수벽형 석괴댐의 내진성능 평가)

  • Ha, Ik-Soo;Kim, Yong-Seong;Seo, Min-Woo;Park, Dong-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1118-1125
    • /
    • 2005
  • In this study, seismic safety of CFRD(Concrete-Face Rockfill Dam) type "D" dam in operation is evaluated from the results of 1-g shaking table test using similitude laws. Model dam is made by similitude law considering the grain size of prototype dam component. After the model dam is impounded to the normal water level(N.W.L), it is excited by artificial earthquake wave corresponding to standard design respond spectrum of the "D" dam site. Displacement response behavior of the dam is examined through the measurement of vertical and horizontal displacement of dam crest. Also, amplification characteristics of acceleration with dam height is examined through the measurement of acceleration with dam height. Finally, the purpose of this study is to evaluate seismic safety of "D" dam in operation. From the results of acceleration measurement, it was found that acceleration of dam crest was amplified about 1.52 times compared to the acceleration of dam bottom and amplification phenomenon is outstanding at three quarters of dam height from the bottom of dam. From the analysis of displacement behavior, it was estimated that vertical displacement of prototype dam is 6.8cm (0.1% of dam height) and horizontal displacement 12.3cm(0.2% of dam height). These percentages is much lower than 1% of dam height(general stability criteria). Therefore, it was concluded that seismic stability of "D" dam against an estimated earthquake is guaranteed.

  • PDF

The Evaluation for Stability at Joint Part in Composition Dam (복합댐 접합부의 안정성 평가)

  • Kim, Jae-Hong;Oh, Byung-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.155-166
    • /
    • 2008
  • Research dam is consisted of concrete gravity dam that right bank department is built to concrete material, left bank department is composition dam that is consisted of rockfill dam that consist of rockfill material In domestic case, composition dam form of storage of water facilities of about 17,000 does not exist hardly in dam of irrigation water industry drinking water purpose that manage local government or other institution, Even if exist, is real condition that there is total nonexistence administrator fare of facilities, Choose unique dam of domestic multipurpose dam and analyzed conduct special quality of con'c gravity dam and rockfill dam joint part To analyze dynamic conduct special quality of composition dam by analytic method in this research, Do modelling via axis of dam and achieved static(Psuedo-static, modify Psuedo-static) and dynamic analysis, When achieving earthquake response analysis, analyzed seismic response analysis between concrete part and rockfill's part.

UNCERTAINTY IN DAM BREACH FLOOD ROUTING RESULTS FOR DAM SAFETY RISK ASSESSMENT

  • Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.215-234
    • /
    • 2002
  • Uncertainty in dam breach flood routing results was analyzed in order to provide the basis fer the investigation of their effects on the flood damage assessments and dam safety risk assessments. The Monte Carlo simulation based on Latin Hypercube Sampling technique was used to generate random values for two uncertain input parameters (i.e., dam breach parameters and Manning's n roughness coefficients) of a dam breach flood routing analysis model. The flood routing results without considering the uncertainty in two input parameters were compared with those with considering the uncertainty. This paper showed that dam breach flood routing results heavily depend on the two uncertain input parameters. This study indicated that the flood damage assessments in the downstream areas can be critical if uncertainty in dam breach flood routing results are considered in a reasonable manner.

  • PDF

Application of subspace identification on the recorded seismic response data of Pacoima Dam

  • Yu, I-No;Huang, Shieh-Kung;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.347-364
    • /
    • 2019
  • Two seismic response data from the CSMIP strong motion instrumentation of Pacoima dam are selected: San Fernando earthquake (Jan 13, 2001; ML=4.3) and Newhall earthquake (Sept. 1, 2011; ML=4.2), for the identification of the dam system. To consider the spatially nonuniform input ground motion along the dam abutment, the subspace identification technique with multiple-input and multiple-output is used to extract the dynamic behavior of the dam-reservoir interaction system. It is observed that the dam-reservoir interaction is significant from the identification of San Fernando earthquake data. The influence of added mass (from the reservoir) during strong ground motion will create a tuned-mass damper phenomenon on the dam body. The fundamental frequency of the dam will be tuned to two different frequencies but with the same mode shapes. As for the small earthquake event, the dam-reservoir interaction is insignificant.

Spatial Analysis of BOD Data in Namgang-Dam Watershed for TMDLs (오염총량관리를 위한 남강댐유역 BOD 자료의 공간특성 분석)

  • Kim, Sang-Min;Kim, Sung-Min;Park, Tae-Yang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.81-88
    • /
    • 2010
  • The purpose of this study is to analyze the spatial characteristics of Namgang-Dam watershed for a Total Maximum Daily Loads (TMDL). Three TMDL target sites, Gyeonghogang1, 2, Namgang-Dam2, are located within Namgang-Dam watershed. Under the current criterion for TMDLs, 3-year arithmetic mean BOD concentration of the target sites should not exceed the target concentration for 2 consecutive years. Two and three times of violation were observed for Gyenghogang2 and Namgang-Dam2 sites while no violation was found for Gyeonghogang1 site. However, no violation was found since 1999 for all three sites. Correlation between each 12 stations within the watershed were analyzed and cluster analysis was conducted to figure out the spatial characteristics of the watershed. Correlation coefficient between Gyonghogang1 and 2 was high (0.758) while the coefficients between lake station (Namgang-Dam2) and stream stations (Gyonghogang1 and 2) were very low. Dendrogram indicated that all of three Namgang-Dam stations were very close and Gyenghogang1, 2 stations were also close.

An Analysis of Streambed Changes Downstream of Daecheong Dam

  • Seo, Hyeong-Deok;Jeong, Sang-Man;Kim, Lee-Hyung;Choi, Kyu-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.103-108
    • /
    • 2008
  • Riverbed change is greatly influenced by artificial factors such as dam construction, gravel collection, and river improvement. This study simulated a long-term bed change based on the GSTARS3 model using actual data from the area downstream of the Geum River Daecheong Dam and compared the estimation with a section of the actual measurement. As a result, it was found that the section of the actual measurement was far lower than the result of the simulation in terms of long-term bed change. While the area downstream of Daecheong Dam displayed approximately an average of 2.29 m of streambed degradation on average while the upper stream area showed approximately 0.63 m of bed degradation over 24 years. In the simulation of the area downstream of Daecheong Dam based on the GSTARS3 model, similar bed degradation was observed. However, a great difference was detected between the result and the actual measurement. According to the cause analysis, the riverbed in the area downstream of Daecheong Dam has continuously degraded due to the dam construction and mass collection of gravel. The mass collection of gravel was the main cause of riverbed change. It was found that about 76% of all riverbed degradation was caused by the mass collection of gravel.

The Evaluation of Seismic Performance of Dam By Shaking Table Tests (진동대시험을 이용한 댐의 내진성능평가)

  • Hwang, Seong-Chun;Oh, Byung-Hyun;Sim, Hyung-Seob;Kang, Bo-Soon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.110-117
    • /
    • 2005
  • This paper deals the shaking table tests with 1/100 scaled model followed by Scott & Iai(1989)'s similitude law for OO dam main desging section to understand nonlinear behavior characteristics of concrete dam body by earthquake wave. As earthquake wave, Hachinohe and Elcentro waves were used and acceleration and displacements are measured to analyze behaviors of dam body. For ground maximum acceleration range ($0.3^{\sim}0.9g$), the results showed linear behavior regardless of ground maximum acceleration and secured safety of structure. To analyze the behavior of dam after tension cracking, 3cm-notch was placed at the critical section of over-flowing section. As results of applying Hachinohe wave(0.8g), Even though tension cracks were formed at over-flowing section by Hachinohe wave(0.8g), it showed that the dam is stable for supporting upper stream part of water tank of dam.

  • PDF