• Title/Summary/Keyword: 3D-scan data

Search Result 397, Processing Time 0.021 seconds

3D analysis of soft tissue around implant after flap folding suture (Flap folding suture를 활용한 판막의 고정에 따른 임플란트 주변 연조직 3차원 부피 변화 관찰)

  • Jung, Sae-Young;Kang, Dae-Young;Shin, Hyun-Seung;Park, Jung-Chul
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.3
    • /
    • pp.130-137
    • /
    • 2021
  • Purpose: The various suture techniques can be utilized in order to maximize the keratinized tissue healing around dental implants. The aim of this study is to compare the soft tissue healing pattern between two different suture techniques after implant placement. Materials and Methods: 15 patients with 18 implants were enrolled in this study. Simple implant placement without any additional bone graft was performed. Two different suture techniques were used to tug in the mobilized flap near the healing abutment after paramarginal flap design. Digital intraoral scan was performed at baseline, post-operation, stitch out, and 3 months after operation. The scan data were aligned using multiple points such as cusp, fossa of adjacent teeth, and/or healing abutment. After subtracting scan data at baseline with other time-point results, closed space indicating volume increment of peri-implant mucosa was selected. The volume of the close space was measured in mm3. The volume between two suture techniques at three time-points was compared using nonparametric rank-based analysis. Results: Healing was uneventful in both groups. Both suture technique groups showed increased soft tissue volume immediately after surgery. The amount of volume increment significantly decreased after 3 months (P < 0.001). Flap folding suture group showed higher median of volume increment than interrupted suture group after 3 months without any statistical significance (P > 0.05). Conclusion: After paramarginal flap reflection, the raised flaps stabilized by flap folding suture showed relatively higher volume maintenance after 3-month healing period. However, further studies are warranted.

Volume Reconstruction by Cellboundary Representation for Medical Volume Visualization (의료영상 가시화를 위한 셀 경계 방식 체적 재구성 방법)

  • Choi, Young-Kyu;Lee, Ee-Taek
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.3
    • /
    • pp.235-244
    • /
    • 2000
  • This paper addresses a new method for constructing surface representation of 3D structures from a sequence of tomographic cross-sectional images, Firstly, we propose cell-boundary representation by transforming the cuberille space into cell space. A cell-boundary representation consists of a set of boundary cells with their 1-voxel configurations, and can compactly describe binary volumetric data. Secondly, to produce external surface from the cell-boundary representation, we define 19 modeling primitives (MP) including volumetric, planar and linear groups. Surface polygons are created from those modeling primitives using a simple table look-up operation. Comparing with previous method such as Marching Cube or PVP algorithm, our method is robust and does not make any crack in resulting surface model. Hardware implementation is expected to be easy because our algorithm is simple(scan-line), efficient and guarantees data locality in computation time.

  • PDF

Surface Flattening criterion of Female's Upper Front Shell Using Grid Method (Grid method에 의한 성인 여성 3차원 형상의 상반신 앞판에 대한 평면전개 기준 연구)

  • Choi, Young-Lim;Nam, Yun-Ja;Choi, Kueng-Mi;Cui, Ming-Hai;Han, Sul-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.12
    • /
    • pp.1825-1836
    • /
    • 2008
  • Many applications in computer graphics require complex and highly detailed models. However it is often desirable to use approximations in place of excessively detailed models in order to control the processing time. Thus, we aim to develop a notion of optimal matrix to simplify surface which can rapidly obtain the high quality 2D patterns flattening 3D surface as follows. Firstly, two 3D bodies are modeled based on existing Size Korea data. Secondly, each model is divided by shell and block for its pattern draft. Thirdly, each block is flattened by grid and bridge method. Finally, we selected the optimal matrix and demonstrated the efficiency and quality of the proposed method. This proposed approach accommodates surfaces with darts, which are commonly used in the clothing industry to reduce the deformation of surface forming and flattening. The resulting optimal matrix could be an initiation of standardization for pattern flattening. It is expected that this method could facilitate much better approximation in both efficiency and precision.

Influence of the Alveolar Cleft Type on Preoperative Estimation Using 3D CT Assessment for Alveolar Cleft

  • Choi, Hang Suk;Choi, Hyun Gon;Kim, Soon Heum;Park, Hyung Jun;Shin, Dong Hyeok;Jo, Dong In;Kim, Cheol Keun;Uhm, Ki Il
    • Archives of Plastic Surgery
    • /
    • v.39 no.5
    • /
    • pp.477-482
    • /
    • 2012
  • Background The bone graft for the alveolar cleft has been accepted as one of the essential treatments for cleft lip patients. Precise preoperative measurement of the architecture and size of the bone defect in alveolar cleft has been considered helpful for increasing the success rate of bone grafting because those features may vary with the cleft type. Recently, some studies have reported on the usefulness of three-dimensional (3D) computed tomography (CT) assessment of alveolar bone defect; however, no study on the possible implication of the cleft type on the difference between the presumed and actual value has been conducted yet. We aimed to evaluate the clinical predictability of such measurement using 3D CT assessment according to the cleft type. Methods The study consisted of 47 pediatric patients. The subjects were divided according to the cleft type. CT was performed before the graft operation and assessed using image analysis software. The statistical significance of the difference between the preoperative estimation and intraoperative measurement was analyzed. Results The difference between the preoperative and intraoperative values were $-0.1{\pm}0.3cm^3$ (P=0.084). There was no significant intergroup difference, but the groups with a cleft palate showed a significant difference of $-0.2{\pm}0.3cm^3$ (P<0.05). Conclusions Assessment of the alveolar cleft volume using 3D CT scan data and image analysis software can help in selecting the optimal graft procedure and extracting the correct volume of cancellous bone for grafting. Considering the cleft type, it would be helpful to extract an additional volume of $0.2cm^3$ in the presence of a cleft palate.

Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel (적층 제조된 H13 공구강의 미세조직과 기계적 특성간의 상관관계)

  • An, Woojin;Park, Junhyeok;Lee, Jungsub;Choe, Jungho;Jung, Im Doo;Yu, Ji-Hun;Kim, Sangshik;Sung, Hyokyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.663-670
    • /
    • 2018
  • H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.

Designing of the Statistical Models for Imprinting Patterns of Quantitative Traits Loci (QTL) in Swine (돼지에 있어서 양적 형질 유전자좌(QTL) 발현 특성 분석을 위한 통계적 검정 모형 설정)

  • Yoon D. H.;Kong H. S.;Cho Y. M.;Lee J. W.;Choi I. S.;Lee H. K.;Jeon G. J.;Oh S. J.;Cheong I. C.
    • Journal of Embryo Transfer
    • /
    • v.19 no.3
    • /
    • pp.291-299
    • /
    • 2004
  • Characterization of quantitative trait loci (QTL) was investigated in the experimental cross population between Berkshire and Yorkshire breed. A total of 512 F$_2$ offspring from 65 matting of F$_1$ parents were phenotyped the carcass traits included average daily gain (ADG), average backfat thickness (ABF), tenth rip backfat thickness (TRF), loin eye area (LEA), and last rip backfat thickness (LRF). All animals were genotyped for 125 markers across the genome. Marker linkage maps were derived and used in QTL analysis based on line cross least squares regression interval mapping. A decision tree to identify QTL with imprinting effects was developed based on tests against the Mendelian mode of QTL expression. To set the evidence of QTL presence, empirical significance thresholds were derived at chromosome-wise and genome-wise levels using specialized permutation strategies. Significance thresholds derived by the permutation test were validated in the data set based on simulation of a pedigree and data structure similar to the Berkshire-Yorkshire population. Genome scan revealed significant evidences for 13 imprinted QTLs affecting growth and body compositions of which nine were identified to be QTL with paternally expressed inheritance mode. Four of QTLs in the loin eye area (LEA), and tenth rip backfat thickness (TRF), a maternally expressed QTL were found on chromosome 10 and 12. These results support the useful statistical models to analyse the imprinting far the QTLs related carcass trait.

The accuracy of a 3D printing surgical guide determined by CBCT and model analysis

  • Ma, Boyoung;Park, Taeseok;Chun, Inkon;Yun, Kwidug
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.279-285
    • /
    • 2018
  • PURPOSE. The aim of this clinical study was to assess the accuracy of the implants placed using a universal digital surgical guide. MATERIALS AND METHODS. Among 17 patients, 28 posterior implants were included in this study. The digital image of the soft tissue acquired from cast scan and hard tissue from CBCT have been superimposed and planned the location, length, diameter of the implant fixture. Then digital surgical guides were created using 3D printer. Each of angle deviations, coronal, apical, depth deviations of planned and actually placed implants were calculated using CBCT scans and casts. To compare implant positioning errors by CBCT scans and plaster casts, data were analyzed with independent samples t-test. RESULTS. The results of the implant positioning errors calculated by CBCT and casts were as follows. The means for CBCT analyses were: angle deviation: $4.74{\pm}2.06^{\circ}$, coronal deviation: $1.37{\pm}0.80mm$, and apical deviation: $1.77{\pm}0.86mm$. The means for cast analyses were: angle deviation: $2.43{\pm}1.13^{\circ}$, coronal deviation: $0.82{\pm}0.44mm$, apical deviation: $1.19{\pm}0.46mm$, and depth deviation: $0.03{\pm}0.65mm$. There were statistically significant differences between the deviations of CBCT scans and cast. CONCLUSION. The model analysis showed lower deviation value comparing the CBCT analysis. The angle and length deviation value of the universal digital guide stent were accepted clinically.

Accuracy of new implant impression technique using dual arch tray and bite impression coping

  • Lee, Shin-Eon;Yang, Sung-Eun;Lee, Cheol-Won;Lee, Won-Sup;Lee, Su Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.265-270
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study was to evaluate the accuracy of a new implant impression technique using bite impression coping and a dual arch tray. MATERIALS AND METHODS. Two implant fixtures were placed on maxillary left second premolar and first molar area in dentoform model. The model with two fixtures was used as the reference. The impression was divided into 2 groups, n=10 each. In group 1, heavy/light body silicone impression was made with pick up impression copings and open tray. In group 2, putty/light body silicone impression was made with bite impression copings and dual arch tray. The reference model and the master casts with implant scan bodies were scanned by a laboratory scanner. Surface tessellation language (STL) datasets from test groups was superimposed with STL dataset of reference model using inspection software. The three-dimensional deviation between the reference model and impression models was calculated and illustrated as a color-map. Data was analyzed by independent samples T-test of variance at ${\alpha}=.05$. RESULTS. The mean 3D implant deviations of pick up impression group (group 1) and dual arch impression group (group 2) were 0.029 mm and 0.034 mm, respectively. The difference in 3D deviations between groups 1 and 2 was not statistically significant (P=.075). CONCLUSION. Within limitations of this study, the accuracy of implant impression using a bite impression coping and dual arch tray is comparable to that of conventional pick-up impression.

Enhancing the digitization of cultural heritage: State-of-Practice

  • Nguyen, Thu Anh;Trinh, Anh Hoang;Pham, Truong-An
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1075-1084
    • /
    • 2022
  • The use of Hi-Tech in cultural heritage preservation and the promotion of cultural heritage values in general, particularly artifacts, opens new opportunities for attracting tourists while also posing a challenge due to the need to reward high-quality excursions to visitors historical and cultural values. Building Information Modeling (BIM) and Hi-Tech in new building management have been widely adopted in the construction industry; however, Historic Building Information Modeling (HBIM) is an exciting challenge in 3D modeling and building management. For those reasons, the Scan-to-HBIM approach involves generating an HBIM model for existing buildings from the point cloud data collected by Terrestrial 3D Laser Scanner integrated with Virtual Reality (VR), Augmented Reality (AR), contributes to spatial historic sites simulation for virtual experiences. Therefore, this study aims to (1) generate the application of Virtual Reality, Augmented Reality to Historic Building Information Modeling - based workflows in a case study which is a monument in the city; (2) evaluate the application of these technologies to improve awareness of visitors related to the promotion of historical values by surveying the experience before and after using this application. The findings shed light on the barriers that prevent users from utilizing technologies and problem-solving solutions. According to the survey results, after experiencing virtual tours through applications and video explanations, participant's perception of the case study improved. When combined with emerging Hi-Tech and immersive interactive games, the Historic Building Information Modeling helps increase information transmission to improve visitor awareness and promote heritage values.

  • PDF

Analysis of Variations in Deformations of Additively Manufactured SUS316L Specimen with respect to Process Parameters and Powder Reuse (금속 적층제조 방식을 이용한 SUS316L 시편의 공정 파라미터 및 금속 분말 재사용에 따른 변형량 변화 분석)

  • Kim, Min Soo;Kim, Ji-Yoon;Park, Eun Gyo;Kim, Tae Min;Cho, Jin Yoen;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • Residual stress that can occur during the metal additive manufacturing process is an important factor that must be properly controlled for the precise production of metal parts through 3D printing. Therefore, in this study, the factors affecting these residual stresses were investigated using an experimental method. For the experiment, a specimen was manufactured through an additive manufacturing process, and the amount of deformation was measured by cutting it. By appropriately calibrating the measured data using methods such as curve fitting, it was possible to quantitatively analyze the effect of process parameters and metal powder reuse on deformation due to residual stress. From this result, it was confirmed that the factor that has the greatest influence on the magnitude of deformation due to residual stress in the metal additive manufacturing process is whether the metal powder is reused. In addition, it was confirmed that process parameters such as laser pattern and laser scan angle can also affect the deformation.