• Title/Summary/Keyword: 3D-mammography

Search Result 16, Processing Time 0.021 seconds

Imaging Human Structures

  • Kim Byung-Tae;Choi Yong;Mun Joung Hwan;Lee Dae-Weon;Kim Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.283-294
    • /
    • 2005
  • The Center for Imaging Human Structures (CIH) was established in December 2002 to develop new diagnostic imaging techniques and to make them available to the greater community of biomedical and clinical researchers at Sungkyunkwan University. CIH has been involved in 5 specific activities to provide solutions for early diagnosis and improved treatment of human diseases. The five area goals include: 1) development of a digital mammography system with computer aided diagnosis (CAD); 2) development of digital radiological imaging techniques; 3) development of unified medical solutions using 3D image fusion; 4) development of multi-purpose digital endoscopy; and, 5) evaluation of new imaging systems for clinical application

A Study on the Image Quality of Mammography and the Average Glandular Dose (맘모그래피의 화질과 평균유선조직선량에 관한 검토)

  • Lee, In-Ja;Kim, Hak-Sung;Kim, Sung-Soo;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.25 no.2
    • /
    • pp.47-55
    • /
    • 2002
  • We came to the following conclusion as the results of experiment on the image quality of mammography and the average glandular dose using 4 apparatuses at 3 hospitals in Seoul. 1. Whereas the measurement of half value layer showed no differences among the apparatuses, the measurement by an attenuation curve method showed some differences by 5.9%. There were 9.1% differences in the measurement by aluminum conversion method. 2. The basic density of an automatic exposure control unit must be D = 1.40, but there was no automatic exposure unit adjusted precisely at any hospitals. The unit at the B hospital exceeded the allowable limit by ${\pm}0.15$. 3. In the photographing using an automatic exposure control unit and the management of an automatic film processor using a sensitometer, most automatic film processors were well kept. But in some cases the mean value of a fluctuation coefficient exceeded the allowable limit. There is a need for more cautious management. 4. The image quality of breast phantom photography was affected by the screen/film system among the hospitals. 5. The average glandular dose at a breast of 4.2 cm thickness depended on the tube voltage, In the case of Mo/Mo, it was measured $0.26{\sim}1.39\;mGy$ less than ACR standard 3.0 mGy.

  • PDF

A Numerical Voxel Model for 3D-printed Uncompressed Breast Phantoms (3D 프린팅 비압박 유방 팬텀 제작을 위한 복셀 기반 수치 모델에 관한 연구)

  • Youn, Hanbean;Baek, Cheol Ha;Jeon, Hosang;Kim, Jinsung;Nam, Jiho;Lee, Jayoung;Lee, Juhye;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Won, Jong Hun;Kim, Ho Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.116-122
    • /
    • 2017
  • Physical breast phantoms would be useful for the development of a dedicated breast computed tomography (BCT) system and its optimization. While the conventional breast phantoms are available in compressed forms, which are appropriate for the mammography and digital tomosynthesis, however, the BCT requires phantoms in uncompressed forms. Although simple cylindrical plastic phantoms can be used for the development of the BCT system, they will not replace the roles of uncompressed phantoms describing breast anatomies for a better study of the BCT. In this study, we have designed a numerical voxel breast phantom accounting for the random nature of breast anatomies and applied it to the 3D printer to fabricate the uncompressed anthropomorphic breast phantom. The numerical voxel phantom mainly consists of the external skin and internal anatomies, including the ductal networks, the glandular tissues, the Cooper's ligaments, and the adipose tissues. The voxel phantom is then converted into a surface data in the STL file format by using the marching cube algorithm. Using the STL file, we obtain the skin and the glandular tissue from the 3D printer, and then assemble them. The uncompressed breast phantom is completed by filling the remaining space with oil, which mimics the adipose tissues. Since the breast phantom developed in this study is completely software-generated, we can create readily anthropomorphic phantoms accounting for diverse human breast anatomies.

Acquisition of Monochromatic X-ray Using Multilayer Mirror (다층박막 거울을 이용한 단색 엑스선 획득)

  • Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • A hard X-ray microscope system for obtaining images of nano-spatial resolution has been widely studied and requires monochromatic X-ray. A multilayer mirror of 84% reflectivity was designed to acquire tungsten characteristic X-ray of 8.4 keV from the white beam generated from an X-ray tube, and the C/W multilayer mirror of $50{\times}50\;mm$ size and 5.65 nm d-spacing was fabricated by the ion-beam sputtering system. The C/W multilayer had a uniformity of 99.5%, and the structure of the multilayer mirror was verified by a TEM image. The obtainable x-ray reflectivity for the C/W multilayer mirror at 8.4 keV was estimated from measuring the X-ray reflectivity using the copper characteristic X-ray of 8.05 keV. Monochromatic X-ray of 8.4 keV was generated by combining a X-ray tube, and the reflectivity and monochromaticity were 77.1% and 0.21 keV, respectively. Monochromatic X-ray generated from the combination of an X-ray tube and an C/W multilayer mirror has enough potential to use X-ray source for hard X-ray microscope system of laboratory size. If the C/W multilayer mirror of d-spacing of a few nanometers can be fabricated, monochromatic X-ray corresponded to 17.5 keV, molybdenum characteristic X-ray, can be obtained and applied to mammography in the medical application.

A noble Sample-and-Hold Circuit using A Micro-Inductor To Improve The Contrast Resolution of X-ray CMOS Image Sensors (X-ray CMOS 영상 센서의 대조 해상도 향상을 위해 Micro-inductor를 적용한 새로운 Sample-and-Hold 회로)

  • Lee, Dae-Hee;Cho, Gyu-Seong;Kang, Dong-Uk;Kim, Myung-Soo;Cho, Min-Sik;Yoo, Hyun-Jun;Kim, Ye-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.7-14
    • /
    • 2012
  • A image quality is limited by a sample-and-hold circuit of the X-ray CMOS image sensor even though simple mos switch or bootstrapped clock circuit are used to get high quality sampled signal. Because distortion of sampled signal is produced by the charge injection from sample-and-hold circuit even using bootstrapped. This paper presents the 3D micro-inductor design methode in the CMOS process. Using this methode, it is possible to increase the ENOB (effective number of bit) through the use of micro-inductor which is calculated and designed in standard CMOS process in this paper. The ENOB is improved 0.7 bit from 17.64 bit to 18.34 bit without any circuit just by optimized inductor value resulting in verified simulation result. Because of this feature, micro-inductor methode suggested in this paper is able to adapt a mamography that is needed high resolution so that it help to decrease patients dose amount.

Assessment of Detection Rate Applying the Digital Convergence Mammographic Imaging Methods(FFDM, DBT, BMRI): Based on Breast Density (디지털 융복합 유방 영상 검사기법(FFDM, DBT, BMRI)을 사용한 검출률 평가 : 유방밀도에 근거하여)

  • Jang, Eun-Hee;Goo, Eun-Hoe
    • Journal of Digital Convergence
    • /
    • v.15 no.5
    • /
    • pp.281-291
    • /
    • 2017
  • This study aimed to assess detection rate applying the mammographic imaging methods. The evaluation of the shape and margin of tumor was conducted by score oriented to 180 patients who had undergone FFDM, DBT and BMRI scans among breast cancer patients, and the number of calcification was classified by size. There was no significant difference between DBT and BMRI for tumors larger than 1 cm in low-density breasts and for tumors larger than 2 cm in high-density breasts. Moreover, as for the detection rate of number of fine calcification, the highest rate was observed in FFDM followed by DBT and BMRI in the order named regardless of size. In conclusion, DBT was able to be detected even without BMRI if the mass was larger than 1 cm in the low-density breast and larger than 2 cm in the high-density breast. The detection rate of calcification turned out to be the highest in FFDM followed by DBT regardless of size, and calcification was not observed by BMRI. The appropriate use of FFDM, DBT and BMRI with respect to mass tumor will contribute to serving as a guide to examination methods of reducing burden of patients.