• Title/Summary/Keyword: 3D woven composite

Search Result 34, Processing Time 0.027 seconds

Low-Velocity Impact Characterizations of 3D Orthogonal Woven Composite Plate (3D 직교 직물 복합재료의 충격 거동 및 특성에 관한 수치해석)

  • 지국현;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.170-174
    • /
    • 2002
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites are obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties are validated by comparison to available experimental results[9]. Second, using the implementation of this validated micromechanical model, 3D transient finite-element analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study will be carried out in terms of energy absorption capabilities.

  • PDF

A Study of damage behaviors of 3D orthogonal woven composite plates under Low velocity Impact (3D 직교 직물 복합재료 평판의 미시구조를 고려한 손상 거동 연구)

  • Ji, Kuk-Hyun;Yang, Jeong-Sik;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.53-56
    • /
    • 2005
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites arc obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties arc validated by comparison to available experimental results. Second, using the implementation of this validated micromechanical model, 3D transient finite-clement analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study with the homogenized model will be carried out in terms of global and local behaviors.

  • PDF

Virtual Experimental Characterization of 3D Orthogonal Woven Composite Materials (직교 직물 복합재료 물성치 예측을 위한 가상 수치 실험)

  • Lee, Chang-Sung;Shin, Hun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.205-210
    • /
    • 2001
  • In this work, virtual material characterization of 3D orthogonal woven composites is performed to predict the elastic properties by a full scale FEA. To model the complex geometry of 3D orthogonal woven composites, an accurate unit structure is first prepared. The unit structure includes warp yarns, filler yarns, stuffer yams and resin regions and reveals the geometrical characteristics. For this virtual experiments by using finite element analysis, parallel multifrontal solver is utilized and the computed elastic properties are compared to available experimental results and the other analytical results. It is founded that a good agreement between material properties obtained from virtual characterization and experimental results. Using the method of this virtual material characterization, the effects of inconsistent filler yarn distribution on the in-plane shear modulus and filler yarn waviness on the transverse Young's modulus are investigated. Especially, the stiffness knockdown of 3D woven composite structures is simulated by virtual characterization. Considering these results, the virtual material characterization of composite materials can be used for designing the 3D complex composite structures and may supplement the actual experiments.

  • PDF

Creating damage tolerant intersections in composite structures using tufting and 3D woven connectors

  • Clegg, Harry M.;Dell'Anno, Giuseppe;Partridge, Ivana K.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.145-156
    • /
    • 2019
  • As the industrial desire for a step change in productivity within the manufacture of composite structures increases, so does the interest in Through-Thickness Reinforcement technologies. As manufacturers look to increase the production rate, whilst reducing cost, Through-Thickness Reinforcement technologies represent valid methods to reinforce structural joints, as well as providing a potential alternative to mechanical fastening and bolting. The use of tufting promises to resolve the typically low delamination resistance, which is necessary when it comes to creating intersections within complex composite structures. Emerging methods include the use of 3D woven connectors, and orthogonally intersecting fibre packs, with the components secured by the selective insertion of microfasteners in the form of tufts. Intersections of this type are prevalent in aeronautical applications, as a typical connection to be found in aircraft wing structures, and their intersections with the composite skin and other structural elements. The common practice is to create back-to-back composite "L's", or to utilise a machined metallic connector, mechanically fastened to the remainder of the structure. 3D woven connectors and selective Through-Thickness Reinforcement promise to increase the ultimate load that the structure can bear, whilst reducing manufacturing complexity, increasing the load carrying capability and facilitating the automated production of parts of the composite structure. This paper provides an overview of the currently available methods for creating intersections within composite structures and compares them to alternatives involving the use of 3D woven connectors, and the application of selective Through-Thickness Reinforcement for enhanced damage tolerance. The use of tufts is investigated, and their effect on the load carrying ability of the structure is examined. The results of mechanical tests are presented for each of the methods described, and their failure characteristics examined.

Micro-Cracked Textile Composite Structures‘ Behavior on the Dynamic Impact Loading (동적 충격하중에 의한 미소균열 직조복합구조의 특성)

  • Hur, Hae-Kyu;Kim, Min-Sung;Jung, Jae-Kwon;Kim, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.222-227
    • /
    • 2008
  • This study is focused on an integrated numerical modeling enabling one to investigate the dynamic behavior and failure of 2-D textile composite and 3-D orthogonal woven composite structures weakened by micro-cracks and subjected to an impact load. The integrated numerical modeling is based on: I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, II) development of an efficient computational approach enabling one to perform transient response analyses of 2-D plain woven and 3-D orthogonal woven composite structures featuring the matrix cracking and exposed to time-dependent loads, III) determination of the structural characteristics of the textile-layered composites and their degraded features under various geometrical yarn shapes, and finally, IV) assessment of the implications of stiffness degradation on dynamic response to impact loads.

  • PDF

Fabrication and Characterization of Al Matrix Composites Reinforced with 3-D Orthogonal Carbon Textile Preforms (3차원 직조형 금속복합재료의 제조와 특성분석)

  • 이상관;변준형;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.188-191
    • /
    • 2002
  • 3-D orthogonal woven carbon/Al composites were fabricated using a pressure infiltration casting method. Especially, to minimize geometrical deformation of fiber pattern and $Al_4C_3$ formation, the process parameters of the minimum pressurizing force, melting temperature, delay and holding time of molten aluminum pressurizing was optimized through the PC-controlled monitoring system. Resonant ultrasound spectroscopy (RUS) was utilized to measure the effective elastic constants of 3-D orthogonal woven carbon/Al composites. The CTE measurement was conducted using strain gages in a heating oven.

  • PDF

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.

Fabrication and Characterization of 3D Woven Textile Reinforced Thermoplastic Composites (3차원 직조형 열가소성수지 복합재료 제조 및 특성화)

  • 홍순곤;변준형;이상관
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.33-40
    • /
    • 2003
  • In order to overcome one of the most pronounced shortcomings of conventional laminated composites, such as the low damage tolerance due to delamination, the thermoplastic materials and 3D (three-dimensional) preforms have been utilized in the manufacture of composite materials. From the newly developed process termed as the co-braiding, hybrid yarns of the thermoplastic fibers (PEEK) and reinforcing fibers (carbon) have been fabricated. In order to further enhance the delamination suppression, through thickness fibers have been introduced by way of 3D weaving technique in the fabrication of textile preforms. The preforms have been thermoformed to make composite materials. Complete impregnation of the PEEK into the carbon fiber bundles has been confirmed. For the comparison of mechanical performance of 3D woven composites, quasi-isotropic laminates using APC-2/AS4 tapes have been fabricated. Tensile and compressive properties of both the composites have been determined. Furthermore. the open hole, impact and CAI(Compression After Impact) tests were also carried out to assess the applicability of 3D woven textile reinforced thermoplastic composites in aerospace structures.

The Evaluation of Interlaminar Fracture Toughness and AE Characteristics in a Plain Woven CFRP Composite with ENF Specimen (ENF 시험편을 이용한 평직 CFRP의 층간파괴인성 및 AE 특성 평가)

  • Yun, Y.S.;Kwon, O.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.117-123
    • /
    • 2006
  • Woven fabrics composites are used as primary structural components in many applications because of their superior properties that offer high specific strength and stiffness. However, the complexity of the fabric structure makes understanding of their failure behavior very difficult. Also, laminate woven fabrics CFRP have unique failure mechanisms such as fiber bridging, fiber/matrix crack and so on. In particular, the delamination phenomenon of the composite materials is one of the most frequent failure mechanisms. So, we estimated interlaminar fracture and damage in composites using as ENF specimen by a 3 point bending test. And AE characteristics were examined for crack propagation on plain woven CFRP. We obtained the following conclusions from the results of the evaluation of the 3 point bending fracture test and AE characteristic estimation. AE counts of maximum crack length were obtained as $85.97{\times}10^4\;and\;93{\times}10^3\;for\;a_0/L=0.3$ and 0.6, respectively. Also the maximum amplitudes were over 80dB at both $a_0/L=0.3\;and\;0.6$. $G_{IIc}$ at that's $a_0/L$ ratio were obtained with $1.07kJ/m^2\;and\;3.79kJ/m^2$.

  • PDF

Permeability prediction of plain woven fabric by using control volume finite element method (검사체적 방법을 이용한 평직의 투과율 계수 예측)

  • Y. S. Song;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF